In der Unterhaltungsmathematik ist eine dihedrale Primzahl (vom englischen dihedral prime, auch dihedral calculator prime) eine Primzahl mit der folgenden Eigenschaft: wenn man sie wie bei einem Taschenrechner in einem 7-Segment-Display betrachtet, müssen die folgenden vier Zahlen:[1]
Auf 7-Segment-Displays kann man die Ziffern 0 bis 9 und die im Hexadezimalsystem üblichen weiteren Ziffern A bis F darstellen (in der Form AbCdEF, die beiden Ziffern b und d allerdings nur in Kleinbuchstaben).
Die einzigen Ziffern, die für eine dihedrale Primzahl in Frage kommen, sind im Dezimalsystem die Ziffern 0, 1, 2, 5 und 8. Im Hexadezimalsystem kommen noch die Ziffern 3 und E dazu.
Es folgt eine Aufzählung der Eigenschaften der Ziffern 0 bis 9 und der im Hexadezimalsystem üblichen weiteren Ziffern A bis F.
Die Ziffern 0, 1 und 8 bleiben nach Drehung und Spiegelung gleich. Die 1 wird zwar nach der einer Drehung bzw. einer Spiegelung vom rechten zum linken Rand des 7-Segment-Displays verschoben, letztendlich bleibt es aber noch immer eine 1.
Die Ziffern 2 und 5 bleiben nach der Drehung gleich, bei der Spiegelung geht die 2 in die 5 über und umgekehrt geht die 5 in die 2 über.
Die Ziffer 3 wird sowohl nach der Spiegelung als auch nach der Drehung zum E. Umgekehrt wird aus E sowohl nach der Spiegelung als auch nach der Drehung zur 3 und ist für dihedrale Primzahlen im Hexadezimalsystem geeignet.
Aus der Ziffer 6 wird nach der Drehung eine 9 und umgekehrt wird aus der 9 nach der Drehung eine 6. Allerdings ergeben diese beiden Ziffern nach der Spiegelung keine gültigen Ziffern, somit sind diese beiden Ziffern für dihedrale Primzahlen ungeeignet.
Die im Hexadezimalsystem verwendete Ziffer A bleibt nach der Spiegelung gleich, gedreht ergibt sie aber keine gültige Ziffer, was sie für dihedrale Primzahlen ungeeignet macht.
Aus der Hexadezimalziffer b wird nach der Spiegelung ein d und umgekehrt wird aus d nach der Spiegelung ein b. Allerdings ergeben auch diese beiden Ziffern nach der Drehung keine gültigen Ziffern und sind somit ungeeignet.
Die Ziffern 4, 7, C und F ergeben weder bei der Drehung noch bei der Spiegelung gültige Ziffern und sind somit ungeeignet.
Beispiele
Die kleinsten dihedralen Primzahlen sind die folgenden:
Die kleinste dihedrale Primzahl, die bei jeder Drehung bzw. Spiegelung eine andere Primzahl ergibt, ist die Zahl , welche um 180° gedreht die Primzahl , gespiegelt die Primzahl und gespiegelt und um 180° gedreht die Primzahl ergibt.[2]
Die kleinste dihedrale Primzahl mit allen gültigen Ziffern ist . Es gibt noch 2958 weitere solche Zahlen bis . Die größte dihedrale Primzahl bis mit allen gültigen Ziffern ist .[3]
Die größte bekannte dihedrale Primzahl ist die folgende (Stand: 5. Februar 2020):[4]
Sie wurde im Jahr 2009 von Darren Bedwell entdeckt und hat 180.055 Stellen.
Primzahlen, die Repunits sind, sind dihedrale Primzahlen.
Primzahlpalindrome, in denen nur die Ziffern 0, 1 und 8 vorkommen, sind dihedrale Primzahlen.
Dihedrale Primzahlen in anderen Zahlensystemen
Im Dualsystem, also im Zahlensystem mit Basis , sind alle Primzahlpalindrome dihedrale Primzahlen.
(Dies folgt aus dem vorher angeführten Satz, dass Primzahlpalindrome, in denen nur die Ziffern 0, 1 und 8 vorkommen, dihedrale Primzahlen sind. Da im Binärsystem nur Nullen und Einsen vorkommen, wird diese Bedingung erfüllt.)
Im Hexadezimalsystem, also im Zahlensystem mit Basis , gibt es keine dihedralen Primzahlen, die mit 3 beginnen.
Beweis:
Angenommen, es gibt eine dihedrale Primzahl im Hexadezimalsystem, welche mit 3 beginnt. Dann endet die horizontal gespiegelte Zahl mit E. Da aber im Hexadezimalsystem neben 0, 2, 4, 6 und 8 auch A, C und E gerade Zahlen sind, würde die horizontal gespiegelte Zahl, welche mit E endet, eine gerade Zahl und somit keine Primzahl sein. Somit kann keine dihedrale Primzahl sein. Die Annahme muss fallengelassen werden, es gibt keine dihedrale Primzahl im Hexadezimalsystem, welche mit 3 beginnt.