Glikolisis merupakan salah satu lintasan metabolisme yang paling universal di berbagai jenis sel dalam hampir semua organisme. Secara keseluruhan, terdapat 10 reaksi yang masing-masing dikatalisis oleh enzim.
Lintasan glikolisis yang paling umum adalah lintasan Embden-Meyerhof-Parnas (bahasa Inggris: EMP pathway), yang pertama kali ditemukan oleh Gustav Embden, Otto Meyerhof dan Jakub Karol Parnas. Namun, terdapat lintasan lain yang digunakan makhluk hidup untuk membentuk energinya sendiri, seperti lintasan fosfoketolase dan lintasan Entner–Doudoroff yang ditemukan oleh Michael Doudoroff dan Nathan Entner.[1]
Dalam lintasan EMP tersebut, reaksi bersih yang terjadi adalah sebagai berikut:[2]
Glikolisis merupakan awal dari metabolisme karbohidrat yang terjadi di dalam sel. Namun, karbohidrat yang dikonsumsi masih berada dalam bentuk monosakarida selain glukosa (galaktosa, manosa, atau fruktosa) atau senyawa kompleks, seperti disakarida (maltosa, laktosa, dan sukrosa) serta polisakarida pati (amilosa dan amilopektin) dan sejenisnya.[4][5]
Pencernaan karbohidrat dimulai di mulut melalui aktivitas mekanik dari gigi dan aktivitas biokimiawi dari air liur dan enzim α-amilase mulut (ptialin). Air liur memberikan pH yang optimal untuk enzim ini bekerja menghidrolisis pati menjadi gula yang lebih sederhana, seperti dekstrin dan maltosa.[6] Polisakarida yang belum sempurna dicerna lalu dihidrolisis dicerna lebih lanjut di usus halus dengan bantuan enzim α-amilase pankreas. Enzim-enzim lain juga turut membantu memecah gula, seperti maltase, sukrase, laktase, dan trehalase.[7]
Produk dari keseluruhan reaksi ini adalah molekul gula tunggal (monosakarida), seperti glukosa, galaktosa, manosa, dan fruktosa. Senyawa-senyawa tersebut kemudian diedarkan ke seluruh tubuh dan masuk ke jalur glikolisis untuk memenuhi beragam kebutuhan seluler.[8]
Metabolisme gula sederhana (monosakarida) dalam metabolisme karbohidrat
Urutan reaksi
Lintasan glikolisis dapat dibagi menjadi dua tahap besar:
Tahap persiapan (preparatory phase), tahap ketika ATP dikonsumsi dan terjadi pada tahap 1-5
Tahap imbalan (payoff phase), tahap ketika ATP diproduksi kembali dan terjadi pada tahap 6-10
Tahap persiapan juga dikenal sebagai tahap investasi karena 1 molekul glukosa membutuhkan 2 molekul ATP (membutuhkan energi) untuk mengubahnya menjadi dua molekul gliseraldehida 3-fosfat. Setelah itu, tahap selanjutnya dikenal dengan tahap imbalan karena mengembalikan energi tersebut dalam bentuk ATP dan NADH.[9]
Gugus alkohol pada atom karbon ke-6 glukosa dikonversi menjadi gugus fosfat dengan menggunakan ATP. Reaksi ini menjaga kadar gula dalam sitoplasma tetap rendah untuk mempertahankan asupan glukosa ke dalam sitosol melalui GLUT dan mencegah glukosa untuk keluar kembali ke dalam periplasma.
Enzimfosfoglukosa isomerase memindahkan guguskarbonil dari G6P ke atom karbon di sampingnya sehingga membentuk isomernya, fruktosa-6 fosfat (F6P). Reaksi ini berada dalam kesetimbangan untuk menjaga jumlah G6P dan F6P di dalam sel.
Mirip seperti reaksi ke-1, terjadi fosforilasi pada atom karbon ke-1 membentuk fruktosa 1,6-bisfosfat (F1,6BP). Adanya dua gugus fosfat menyebabkan reaksi ini berjalan hanya satu arah dan menjadi penentu untuk masuknya senyawa ke dalam lintasan glikolisis.
Reaksi pertama dalam tahap kedua. G3P mengalami oksidasi oleh NAD+ dan mendapatkan gugus fosfat baru yang akan dilepas pada reaksi selanjutnya. Energi yang disimpan sejak awal glikolisis mulai diberikan dan disimpan oleh NADH.
Ada kalanya ketika sel membutuhkan glukosa pada jumlah tertentu untuk mempertahankan kesetimbangan kimiawinya. Maka dari itu, tubuh memiliki lintasan sendiri untuk memenuhi kebutuhan akan glukosa tersebut, yakni lintasan glukoneogenesis untuk menyintesis glukosa. Dalam mamalia, lintasan ini terjadi di sel hati, ginjal, dan usus halus.[2] Dengan adanya mekanisme ini, tubuh dapat mendaur ulang senyawa-senyawa tertentu, seperti asam lakta dari metabolisme di otot (siklus Cori) dan gliserol hasil metabolisme lemak dan mengubahnya menjadi glukosa.
Di antara 10 reaksi glikolisis, hanya tujuh yang dapat berlangsung ke arah sebaliknya. Tiga di antaranya yakni reaksi ke-1, 3, dan 10 tidak dapat terjadi karena tidak disukai secara termodinamika.[2]
Senyawa perantara untuk lintasan lain
Glikolisis merupakan lintasan yang berkaitan erat dengan lintasan metabolisme lain.[9][10] Produk langsung dari glikolisis, piruvat akan terlebih dahulu dioksidasi menjadi asetil-KoA sebelum memasuki siklus asam sitrat. NADH yang terbentuk, bersama dengan NADH dari lintasan metabolisme lain, akan dikonversi menjadi ATP pada tahap terakhir respirasi: fosforilasi oksidatif.
Dalam peristiwa fermentasi, mikroba dapat memanfaatkan NADH yang terbentuk untuk menjalankan reaksi lebih lanjut.
Fermentasi alkohol, seperti dalam fermentasi minuman beralkohol dan tapai serta pembuatan bahan bakar berbasis bioetanol, piruvat dikonversi menjadi asetaldehida (dengan enzim piruvat dekarboksilase) atau etanol (dengan enzim etanol dehidrogenase).
Fermentasi asam laktat, seperti dalam fermentasi keju, yoghurt, dan dadih oleh bakteri asam laktat, piruvat diubah menjadi asam laktat dengan enzim laktat dehidrogenase.
Walau glikolisis merupakan lintasan katabolisme dengan tujuan utama memecah glukosa menjadi energi, senyawa perantara di dalam lintasan ini juga berperan sebagai prekursor dalam lintasan anabolisme (pembentukan) senyawa lain. Oleh karena itu, glikolisis membawa peran penting dalam menjaga konsentrasi senyawa karbon untuk dipecah dan untuk digunakan. Beberapa lintasan yang sangat bergantung dengan glikolisis, antara lain:
Lintasan pentosa fosfat, dimulai dari oksidasi glukosa 6-fosfat untuk membentuk NADPH dan bermacam-macam gula rantai lima. NADPH berperan dalam sintesis lipid, sedangkan gula rantai lima seperti ribosa 5-fosfat digunakan untuk sintesis asam amino dan nukleotida.
Sintesis glikogen, yang juga dimulai dari glukosa 6-fosfat
Gliserol, yang dibuat dari gliseraldehida 3-fosfat
Sintesis asam lemak dan kolesterol, yang keduanya dimulai dari asetil-Koa, hasil oksidasi piruvat; dan bahkan
Sintesis terpen dan terpenoid (lintasan MVA dan MEP) juga dimulai dari piruvat.
^ abcNelson, David L.; Cox, Michael M.; Lehninger, Albert L. (2013). Lehninger principles of biochemistry (edisi ke-6. ed., [international ed.]). New York, NY: Freeman. ISBN978-1-4641-0962-1.