100000000

100000000
100000000
数表整数

<<   100‍  101‍  102‍  103‍  104‍  105‍  106‍  107‍  108‍  109>>
10000000 100000000 1000000000

命名
小寫一億
大寫壹億
序數詞第一億
one hundred millionth
識別
種類整數
性質
質因數分解
表示方式
100000000
算筹
希腊数字
羅馬數字
二进制101111101011110000100000000(2)
三进制20222011112012201(3)
四进制11331132010000(4)
五进制201100000000(5)
八进制575360400(8)
十二进制295A6454(12)
十六进制5F5E100(16)

100,000,000一亿)是99,999,999和100,000,001之间的自然数

科学记数法写成 108

东亚语言将“亿”作为一个计数单位,相当另一个计数单位“”的平方。在韩文和日文中分别为 eok ( 억/億) 和oku ()。

100,000,000是100四次方,也是10000平方

值得注意的 9 位数字 (100,000,001–999,999,999)

100,000,001 至 199,999,999

  • 100,000,007 = 最小的九位素数[1]
  • 100,005,153 = 最小的 9 位三角数和第 14,142 个三角数
  • 100,020,001 = 100012, 回文平方
  • 100,544,625 = 4653 ,最小的9位立方
  • 102,030,201 = 101012,回文平方
  • 102,334,155 = 斐波那契数
  • 102,400,000 = 405
  • 104,060,401 = 102012 = 1014 ,回文平方
  • 105,413,504 = 147
  • 107,890,609 = 韦德伯恩-埃瑟林顿数[2]
  • 111,111,111 = 循環單位, 12345678987654321 的平方根
  • 111,111,113 = 陈素数、苏菲杰曼素数、表弟素数
  • 113,379,904 = 106482 = 4843 = 226
  • 115,856,201 = 415
  • 119,481,296 = 对数[3]
  • 121,242,121 = 110112, 回文平方
  • 123,454,321 = 111112, 回文平方
  • 123,456,789 = 最小无零基 10 泛数字
  • 125,686,521 = 112112, 回文平方
  • 126,390,032 = 补数相等的 34 珠项链数量(允许翻转) [4]
  • 126,491,971 = 莱昂纳多素数
  • 129,140,163 = 317
  • 129,145,076 = 利兰数
  • 129,644,790 = 加泰罗尼亚号码[5]
  • 130,150,588 = 33 珠二元项链的数量,有 2 种颜色的珠子,颜色可以互换,但不允许翻转[6]
  • 130,691,232 = 425
  • 134,217,728 = 5123 = 89 = 227
  • 134,218,457 = 利兰数
  • 136,048,896 = 116642 = 1084
  • 139,854,276 = 118262 ,最小无零底数 10 泛数字平方
  • 142,547,559 = 莫茨金数[7]
  • 147,008,443 = 435
  • 148,035,889 = 121672 = 5293 = 236
  • 157,115,917 – 24 个单元的平行四边形多格骨牌的数量。 [8]
  • 157,351,936 = 125442 = 1124
  • 164,916,224 = 445
  • 165,580,141 = 斐波那契数
  • 167,444,795 = 6 进制下的循环数
  • 170,859,375 = 157
  • 171,794,492 = 具有 36 个节点的缩减树的数量[9]
  • 177,264,449 = 利兰数
  • 179,424,673 = 第 10,000,000 个质数
  • 184,528,125 = 455
  • 188,378,402 = 划分{1,2,...,11}然后将每个单元(块)划分为子单元的方式数。 [10]
  • 190,899,322 = 贝尔数[11]
  • 191,102,976 = 138242 = 5763 = 246
  • 192,622,052 = 自由 18 格骨牌的数量
  • 199,960,004 = 边长为 9999 的四面体的表面点数[12]

200,000,000 至 299,999,999

  • 200,000,002 = 边长为 10000 的四面体的表面点数[12]
  • 205,962,976 = 465
  • 210,295,326 = Fine's number
  • 211,016,256 = GF(2) 上的 33 次本原多项式的数量[13]
  • 212,890,625 = 1-自守数[14]
  • 214,358,881 = 146412 = 1214 = 118
  • 222,222,222 = 純位數
  • 222,222,227 = 安全素数
  • 223,092,870 = 前九个素数的乘积,即第九个素数
  • 225,058,681 = 佩尔数[15]
  • 225,331,713 = 以 9 为基数的自描述数字
  • 229,345,007 = 475
  • 232,792,560 = 高级高合数; [16]可羅薩里過剩數[17]可被 1 到 22 所有数字整除的最小数字
  • 244,140,625 = 156252 = 1253 = 256 = 512
  • 244,389,457 = 利兰数
  • 244,330,711 = n 使得 n | (3n + 5)
  • 245,492,244 = 补数相等的 35 珠项链数量(允许翻转) [4]
  • 252,648,992 = 34 珠二元项链的数量,有 2 种颜色的珠子,颜色可以互换,但不允许翻转[6]
  • 253,450,711 = 韦德伯恩-埃瑟林顿素数[2]
  • 254,803,968 = 485
  • 267,914,296 = 斐波那契数
  • 268,435,456 = 163842 = 1284 = 167 = 414 = 228
  • 268,436,240 = 利兰数
  • 268,473,872 = 利兰数
  • 272,400,600 = 通过 20 所需的调和级数的项数
  • 275,305,224 = 5 阶幻方的数量,不包括旋转和反射
  • 282,475,249 = 168072 = 495 = 710
  • 292,475,249 = 利兰数

300,000,000 至 399,999,999

  • 308,915,776 = 175762 = 6763 = 266
  • 312,500,000 = 505
  • 321,534,781 = 马尔可夫素数
  • 331,160,281 = 莱昂纳多素数
  • 333,333,333 = 純位數
  • 336,849,900 = GF(2) 上的 34 次本原多项式的数量[13]
  • 345,025,251 = 515
  • 350,238,175 = 具有 37 个节点的缩减树的数量[9]
  • 362,802,072 = 25 个单元的平行四边形多格骨牌数量[8]
  • 364,568,617 = 利兰数
  • 365,496,202 = n 使得 n | (3n + 5)
  • 367,567,200 = 可羅薩里過剩數Superior highly composite number英语Superior highly composite number
  • 380,204,032 = 525
  • 381,654,729 = 唯一累进可除数,同时也是无零泛泛位数
  • 387,420,489 = 196832 = 7293 = 276 = 99 = 318迭代幂次表示为 29
  • 387,426,321 = 利兰数

400,000,000 至 499,999,999

  • 400,080,004 = 200022, 回文平方
  • 400,763,223 = 莫茨金数[7]
  • 404,090,404 = 201022, 回文平方
  • 405,071,317 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88 + 99
  • 410,338,673 = 177
  • 418,195,493 = 535
  • 429,981,696 = 207362 = 1444 = 128 = 100,000,000 12又名gross-great-great-gross (100 12 Great-great-grosses)
  • 433,494,437 = 斐波那契素数、马尔可夫素数
  • 442,386,619 = 交替阶乘[18]
  • 444,101,658 = 具有 27 个节点的(无序、无标签)有根修剪树的数量[19]
  • 444,444,444 = 純位數
  • 455,052,511 = 10以下的素数个数10
  • 459,165,024 = 545
  • 467,871,369 = 14 个顶点上的无三角形图的数量[20]
  • 477,353,376 = 补数相等的 36 珠项链数量(允许翻转) [4]
  • 477,638,700 = 加泰罗尼亚号码[5]
  • 479,001,599 = 阶乘质数[21]
  • 479,001,600 = 12!
  • 481,890,304 = 219522 = 7843 = 286
  • 490,853,416 = 35 珠二元项链的数量,有 2 种颜色的珠子,颜色可以交换,但不允许翻转[6]
  • 499,999,751 = 苏菲·杰曼素数

500,000,000 至 599,999,999

  • 503,284,375 = 555
  • 522,808,225 = 228652, 回文平方
  • 535,828,591 = 莱昂纳多素数
  • 536,870,911 = 第三个具有质数指数的复合梅森数
  • 536,870,912 = 229
  • 536,871,753 = 利兰数
  • 542,474,231 = k 使得前 k 个素数的平方和可被 k 整除。 [22]
  • 543,339,720 = 佩尔号[15]
  • 550,731,776 = 565
  • 554,999,445 = 以 10 为基数表示数字长度 9 的Kaprekar 常数
  • 555,555,555 = 純位數
  • 574,304,985 = 19 + 29 + 39 + 49 + 59 + 69 + 79 + 89 + 99[23]
  • 575,023,344 = xx 在 x=1 处的 14 阶导数[24]
  • 594,823,321 = 243892 = 8413 = 296
  • 596,572,387 = 韦德本-埃瑟林顿素数[2]

600,000,000 至 699,999,999

  • 601,692,057 = 575
  • 612,220,032 = 187
  • 617,323,716 = 248462, 回文平方
  • 635,318,657 = 欧拉知道的两个四次方以两种不同方式相加的最小数 ( 594 + 1584 = 1334 + 1344 )。
  • 644,972,544 = 8643, 3-平滑数
  • 656,356,768 = 585
  • 666,666,666 = 純位數
  • 670,617,279 = Collatz 猜想的 109以下的最高停止时间整数

700,000,000 至 799,999,999

  • 701,408,733 = 斐波那契数
  • 714,924,299 = 595
  • 715,497,037 = 具有 38 个节点的缩减树的数量[9]
  • 715,827,883 =瓦格斯塔夫素数[25]雅各布斯塔尔素数
  • 725,594,112 = GF(2) 上的 36 次本原多项式的数量[13]
  • 729,000,000 = 270002 = 9003 = 306
  • 742,624,232 = 免费 19 联骨牌数量
  • 774,840,978 = 利兰数
  • 777,600,000 = 605
  • 777,777,777 = 純位數
  • 778,483,932 = Fine Number
  • 780,291,637 = 马尔可夫素数
  • 787,109,376 = 1-自守数[14]

800,000,000 至 899,999,999

  • 815,730,721 = 138
  • 815,730,721 = 1694
  • 835,210,000 = 1704
  • 837,759,792 = 26 个单元的平行四边形多骨牌数量。 [8]
  • 844,596,301 = 615
  • 855,036,081 = 1714
  • 875,213,056 = 1724
  • 887,503,681 = 316
  • 888,888,888 = 纯位数
  • 893,554,688 = 2-自守数[26]
  • 893,871,739 = 197
  • 895,745,041 = 1734

900,000,000 至 999,999,999

  • 906,150,257 = 波利亚猜想的最小反例
  • 916,132,832 = 625
  • 923,187,456 = 303842 ,最大的无零泛数字平方
  • 928,772,650 = 补数相等的 37 珠项链数量(允许翻转) [4]
  • 929,275,200 = GF(2) 上的 35 次本原多项式的数量[13]
  • 942,060,249 = 306932,回文平方
  • 987,654,321 = 最大的无零泛数字
  • 992,436,543 = 635
  • 997,002,999 = 9993 ,最大的9位立方
  • 999,950,884 = 316222 ,最大的九位数平方
  • 999,961,560 = 最大的 9 位数三角数和第 44,720 个三角数
  • 999,999,937 = 最大的 9 位质数
  • 999,999,999 = 純位數

参考

  1. ^ Sloane, N.J.A. (编). Sequence A003617 (Smallest n-digit prime). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [7 September 2017]. 
  2. ^ 2.0 2.1 2.2 Sloane, N.J.A. (编). Sequence A001190 (Wedderburn-Etherington numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A001190 (Wedderburn-Etherington numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  3. ^ Sloane, N.J.A. (编). Sequence A002104 (Logarithmic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  4. ^ 4.0 4.1 4.2 4.3 Sloane, N.J.A. (编). Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  5. ^ 5.0 5.1 Sloane, N.J.A. (编). Sequence A000108 (Catalan numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  6. ^ 6.0 6.1 6.2 Sloane, N.J.A. (编). Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  7. ^ 7.0 7.1 Sloane, N.J.A. (编). Sequence A001006 (Motzkin numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A001006 (Motzkin numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  8. ^ 8.0 8.1 8.2 Sloane, N.J.A. (编). Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  9. ^ 9.0 9.1 9.2 Sloane, N.J.A. (编). Sequence A000014 (Number of series-reduced trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  10. ^ Sloane, N.J.A. (编). Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  11. ^ Sloane's A000110 : Bell or exponential numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2019-08-30). 
  12. ^ 12.0 12.1 Sloane, N.J.A. (编). Sequence A005893 (Number of points on surface of tetrahedron). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  13. ^ 13.0 13.1 13.2 13.3 Sloane, N.J.A. (编). Sequence A011260 (Number of primitive polynomials of degree n over GF(2)). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  14. ^ 14.0 14.1 Sloane, N.J.A. (编). Sequence A003226 (Automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  15. ^ 15.0 15.1 Sloane, N.J.A. (编). Sequence A000129 (Pell numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. Sloane, N. J. A. (ed.). "Sequence A000129 (Pell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ Sloane's A002201 : Superior highly composite numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2010-12-29). 
  17. ^ Sloane's A004490 : Colossally abundant numbers. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2012-05-25). 
  18. ^ Sloane's A005165 : Alternating factorials. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2012-10-09). 
  19. ^ Sloane, N.J.A. (编). Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  20. ^ Sloane, N.J.A. (编). Sequence A006785 (Number of triangle-free graphs on n vertices). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  21. ^ Sloane's A088054 : Factorial primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2020-10-03). 
  22. ^ Sloane, N.J.A. (编). Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2022-06-02]. 
  23. ^ Sloane, N.J.A. (编). Sequence A031971. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  24. ^ Sloane, N.J.A. (编). Sequence A005727. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. 
  25. ^ Sloane's A000979 : Wagstaff primes. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2016-06-17]. (原始内容存档于2010-11-25). 
  26. ^ Sloane, N.J.A. (编). Sequence A030984 (2-automorphic numbers). The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. [2021-09-01].