非整数进位制非整数进位制是指底数不是正整數的进位制。對於一個非正整數的底數β > 1,以下的數值: 為 而數字di為小於β的非負整數。此進位制可以配合所使用β,稱為β进制或β展開,後者的名稱是數學家Rényi在1957年開始使用[1],而數學家Parry在1960年第一個進行相關的研究[2]。每一個實數至少有一個β进位制的表示方式(也可能是無限多個)。 β进制可以應用在编码理论[3]及準晶體模型的描述[4][5]。 建構β进制是十進制的延伸。十進制的表示法不唯一(例如,1.000... = 0.999...),不過所有有限位數的十進制表示法是唯一的。有限位數β进制就不一定有此特性,例如,在β = φ(黃金比例)時,φ + 1 = φ。 針對特定實數,選擇其β进制各位數的方式,可以用以下的贪心算法產生,本質上是來自Rényi (1957),此處的公式則來自Frougny (1992) 。 令β > 1是底數,x為非負的實數。令⌊x⌋是x的取整函数(小於等於x的最大整數),令{x} = x − ⌊x⌋是x的小數部份。存在一整數k使得βk ≤ x < βk+1。令 且 針對k − 1 ≥ j > −∞,定義 換句話說,x的正規β進制表示法可以用以下方式得到:先選擇最大的dk,使得βkdk ≤ x,再選擇最大的dk−1,使得βkdk + βk−1dk−1 ≤ x,以此類推。此作法會選擇可以表示x,字典序最大的字串。 若是整數進位制,以上方式會產生一般整數進位制下的數值。因此此建構方式將一般的演算法推廣到非整數的基底β。 參考文獻
相關條目
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia