鈇 没有稳定的同位素 。
圖表
符號
Z
N
同位素質量(u )[ n 1] [ n 2]
半衰期 [ n 1] [ n 2]
衰變 方式
衰變 產物
原子核 自旋 [ n 1]
激發能量[ n 2]
284 Fl[ 2] [ 3]
114
170
2.5 ms
SF
可变
0+
285 Fl[ 2] [ 3]
114
171
285.18364(47)#
100 ms[ 4]
α
281 Cn
3/2+#
286 Fl
114
172
286.18424(71)#
130 ms
SF (60%)[ n 3]
可变
0+
α (40%)
282 Cn
287 Fl
114
173
287.18678(66)#
510(+180-100) ms
α
283 Cn
287m Fl[ n 4]
5.5# s
α #
283 Cn#
288 Fl
114
174
288.18757(91)#
0.8(+27−16) s
α
284 Cn
0+
289 Fl
114
175
289.19042(60)#
2.6(+12−7) s
α
285 Cn
5/2+#
289m Fl[ n 4]
1.1# min
α #
285 Cn#
290 Fl[ n 4]
114
176
19 s?
EC
290 Nh
0+
α
286 Cn
^ 1.0 1.1 1.2 畫上#號的數據代表沒有經過實驗的証明,僅為理論推測。
^ 2.0 2.1 2.2 用括號括起來的數據代表不確定性。
^ 在会自发裂变的核素中是最重的
^ 4.0 4.1 4.2 这种同位素未确认
同位素與核特性
核合成
能產生Z=114复核的目標、發射體組合
下表列出各種可用以產生114號元素的目標、發射體組合。
目標
發射體
CN
結果
208 Pb
76 Ge
284 Fl
至今失敗
232 Th
54 Cr
286 Fl
尚未嘗試
238 U
50 Ti
288 Fl
尚未嘗試
244 Pu
48 Ca
292 Fl
反應成功
242 Pu
48 Ca
290 Fl
反應成功
239 Pu
48 Ca
287 Fl
尚未嘗試
248 Cm
40 Ar
288 Fl
尚未嘗試
249 Cf
36 S
285 Fl
尚未嘗試
冷聚變
208 Pb(76 Ge,x n)284−x Fl
第一次以冷聚變合成鈇的實驗於2003年法國 國家大型重離子加速器 (GANIL)進行,產量限制為1.2 pb時並沒有合成任何原子。
熱聚變
244 Pu(48 Ca,x n)292−x Fl (x =3,4,5)
杜布納的一個團隊於1998年11月首次嘗試合成鈇。他們探測到一個源自289 Fl的長衰變鏈。[ 5] 在1999年重複進行的實驗再次合成了兩個鈇原子,這次則是288 Fl。[ 6] 團隊在2002年進一步研究了這項反應。在測量3n、4n和5n中子蒸發激發函數時,他們探測到3個289 Fl原子、12個288 Fl原子及1個新同位素287 Fl原子。根據這些結果,第一個被探測到的原子是290 Fl或289m Fl,而接著的兩個原子是289 Fl。[ 7] 2007年4月利用285 Cn來研究鎶的化學特性時,科學家再次進行這條反應。瑞士 保羅謝勒研究所 和Flerov核反應實驗室直接探測到兩個288 Fl原子,這為對鈇的首次化學研究打下基礎。
2008年6月,科學家再用該反應來產生289 Fl同位素,以研究鈇的化學特性。這次發現了一個鈇原子,這得以確認它的屬性類似於惰性氣體 。
2009年5月至7月,德國重離子研究所 第一次研究了這個反應,再進一步嘗試合成Ts 。團隊成功確認了288 Fl和289 Fl的合成與衰變數據,合成的原子中,前者有9個,而後者有4個。[ 8]
242 Pu(48 Ca,x n)290−x 114 (x =2,3,4,5)
杜布納的團隊首先在1999年3月至4月研究了這項反應,並探測到兩個287 Fl原子。[ 9] 由於有關283 Cn的數據有衝突,所以科學家在2003年9月重複進行了該實驗,以確認287 Fl和283 Cn的衰變數據(詳見鎶 )。他們通過測量2n、3n和4n激發函數得到了288 Fl、287 Fl和新同位素286 Fl的衰變數據。[ 10] [ 11]
2006年4月,保羅謝勒研究所和Flerov核反應實驗室的合作計劃曾使用過這項反應來產生283 Cn,以研究鎶的屬性。在2007年4月進行的一項確認實驗中,團隊直接探測到287 Fl,並能夠取得有關鈇原子化學特性的最初數據。
2009年1月,伯克利的團隊使用伯克利充氣分離器 (BGS)和新得到的242 Pu樣本繼續進行研究,通過以上反應嘗試合成鈇。2009年9月,他們公佈成功探測到2個鈇原子,分別為287 Fl和286 Fl,證實了Flerov核反應實驗室取得的衰變數據,但是所測量的截面更低。[ 12]
2009年4月,瑞士和俄羅斯的合作研究計劃再次使用以上反應進行了對鈇化學屬性的研究,其中探測到一個283 Cn原子。
2010年12月,勞倫斯伯克利國家實驗室的團隊公佈發現了285 Fl原子,並觀測到5個衰變產物的新同位素。
作為衰變產物
科學家也曾在鉝 和鿫 的衰變鏈 中觀測到鈇的同位素。
撤回的同位素
285 Fl
在1999年發現293 Og 的報告中,285 Fl是以11.35 MeV能量進行α衰變的,半衰期 為0.58 ms。發現者於2001年撤回了這項發現。這個同位素最後是在2010年被合成的,其衰變屬性和1999年報告中的不符,意味著撤回的數據是錯誤的。
同位素發現時序
同位素
發現年份
核反應
285 Fl
2010年
242 Pu(48 Ca,5n)
286 Fl
2002年
249 Cf(48 Ca,3n) [ 14]
287a Fl
2002年
244 Pu(48 Ca,5n)
287b Fl ??
1999年
242 Pu(48 Ca,3n)
288 Fl
2002年
244 Pu(48 Ca,4n)
289a Fl
1999年
244 Pu(48 Ca,3n)
289b Fl ?
1998年
244 Pu(48 Ca,3n)
原子序為114复核的裂變
2000年至2004年期間Flerov核反應實驗室進行了幾項研究292 Fl複核衰變屬性的實驗。他們所使用的核反應為244 Pu+48 Ca。結果顯示,這些複核進行裂變時主要發射完整軌域原子核,如82 132 Sn。另一項發現是,使用48 Ca和58 Fe作為發射體的聚變裂變路徑相似,這表示未來在合成超重元素時有可能使用58 Fe發射體。[ 15]
核異構體
289 Fl
第一次合成的鈇同位素為289 Fl,它以9.71 MeV的能量進行α衰變,時長為30秒。之後的直接合成實驗中並未被觀測到這種現象。然而,在一次293 Lv的合成實驗中,所測得的衰變鏈釋放了9.63 MeV能量的α粒子,時長為2.7秒。之後其他的衰變都與289 Fl的相似。這很明確地表明,這些衰變活動都是來自於同核異構體的。近期實驗中並未出現類似的活動,表示這種同核異構體的產量約為基態的20%,而第一個實驗觀測到的現象只是巧合。要解釋這個問題,必須進行更多的研究。
287 Fl
使用242 Pu作為目標的初次實驗中,所觀測到的287 Fl同位素進行衰變時放射能量為10.29 MeV的α粒子,時常為5.5秒。其衰變產物再進行自發裂變,時常符合先前合成的283 Cn。後來科學家再沒有觀測到同樣的衰變活動(詳見鎶 )。不過,兩者的相關性表示實驗結果是非隨機的,而合成方式是不會影響同核異構體的生成的。這些問題要經過更多研究才能解決。
同位素產量
下表列出直接合成鈇的聚變核反應的截面和激發能量。粗體數據代表從激發函數算出的最大值。+代表觀測到的出口通道。
冷聚變
發射體
目標
CN
1n
2n
3n
76 Ge
208 Pb
284 Fl
<1.2 pb
熱聚變
發射體
目標
CN
2n
3n
4n
5n
48 Ca
242 Pu
290 Fl
0.5 pb, 32.5 MeV
3.6 pb, 40.0 MeV
4.5 pb, 40.0 MeV
<1.4 pb, 45.0 MeV
48 Ca
244 Pu
292 Fl
1.7 pb, 40.0 MeV
5.3 pb, 40.0 MeV
1.1 pb, 52.0 MeV
理論計算
蒸發殘留物截面
下表列出各種目標-發射體組合,並給出最高的預計產量。
MD = 多面;DNS = 雙核系統; σ = 截面
目標
發射體
CN
通道(產物)
σmax
模型
參考資料
208 Pb
76 Ge
284 Fl
1n (283 Fl)
60 fb
DNS
[ 16]
208 Pb
73 Ge
281 Fl
1n (280 Fl)
0.2 pb
DNS
[ 16]
238 U
50 Ti
288 Fl
2n (286 Fl)
60 fb
DNS
[ 17]
244 Pu
48 Ca
292 Fl
4n (288 Fl)
4 pb
MD
[ 18]
242 Pu
48 Ca
290 Fl
3n (287 Fl)
3 pb
MD
[ 18]
衰變特性
對Fl不同同位素半衰期的理論估算與實驗結果相符。[ 19] [ 20] 沒有裂變的同位素298 Fl的α衰變半衰期預計有17天。[ 21] [ 22]
尋找穩定島:298 Fl
根據宏觀—微觀理論[來源請求] ,原子序114是下一個幻數 。這意味著,該原子核呈球體狀,而其基態將會有高和寬的裂變位壘,因此自發裂變部分的半衰期會很長。
當原子序為114時,宏觀—微觀理論表示下一個中子幻數為184,因此298 Fl原子核很有可能會是繼208 Pb(原子序82、中子數126)之後下一個滿足雙重幻數的原子核。298 Fl位於理論預計的“穩定島 ”的中央。然而,其他運用相對論平均場理論的計算顯示,原子序120、122和126才是幻數。有一種可能性是,穩定性並不在單一數字上飆升,而是在原子序從114到126時都是較高的。
由於偶核效應,297 鏌 的軌域修正能量最低,因此裂變位壘最高。由於較高的裂變位壘,任何在這穩定島上的原子核都只會進行α衰變,所以半衰期最長的原子核將會是298 Fl。半衰期預計很難超過10分鐘,除非中子數為184的中子軌域實際比理論上預計的更穩定。另外,由於有奇數中子,297 Fl的半衰期可能會更长。
参考文獻
^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. Investigation of 48 Ca-induced reactions with 242 Pu and 238 U targets at the JINR Superheavy Element Factory. Physical Review C. 2022, 106 (024612). doi:10.1103/PhysRevC.106.024612 .
^ 2.0 2.1 V. K. Utyonkov. Synthesis of superheavy nuclei at limits of stability: 239,240 Pu + 48 Ca and 249-251 Cf + 48 Ca reactions (PDF) . Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA. March 31 – April 2, 2015 [2015-11-16 ] . (原始内容存档 (PDF) 于2015-06-06).
^ 3.0 3.1 Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Sabel'nikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y. Experiments on the synthesis of superheavy nuclei 284 Fl and 285 Fl in the 239,240 Pu + 48 Ca reactions. Physical Review C. 15 September 2015, 92 (3): 034609. Bibcode:2015PhRvC..92c4609U . doi:10.1103/PhysRevC.92.034609 .
^ Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Karpov, A. V.; Popeko, A. G.; Sabel'nikov, A. V.; Svirikhin, A. I.; Vostokin, G. K.; Hamilton, J. H.; Kovrinzhykh, N. D.; Schlattauer, L.; Stoyer, M. A.; Gan, Z.; Huang, W. X.; Ma, L. Neutron-deficient superheavy nuclei obtained in the 240 Pu+48 Ca reaction. Physical Review C. 30 January 2018, 97 (14320): 1–10. Bibcode:2018PhRvC..97a4320U . doi:10.1103/PhysRevC.97.014320 .
^ Oganessian, Yu. Ts. Synthesis of Superheavy Nuclei in the 48 Ca+ 244 Pu Reaction. Physical Review Letters. 1999, 83 : 3154. Bibcode:1999PhRvL..83.3154O . doi:10.1103/PhysRevLett.83.3154 .
^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Synthesis of superheavy nuclei in the 48 Ca+244 Pu reaction: 288 114. Physical Review C. 2000, 62 : 041604. Bibcode:2000PhRvC..62d1604O . doi:10.1103/PhysRevC.62.041604 .
^ 7.0 7.1 Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48 Ca,xn)292−x 114 and 245 Cm(48 Ca,xn)293−x 116. Physical Review C. 2004, 69 : 054607. Bibcode:2004PhRvC..69e4607O . doi:10.1103/PhysRevC.69.054607 .
^ Element 114 - Heaviest Element at GSI Observed at TASCA [失效連結 ]
^ Yeremin, A. V.; Oganessian, Yu. Ts.; Popeko, A. G.; Bogomolov, S. L.; Buklanov, G. V.; Chelnokov, M. L.; Chepigin, V. I.; Gikal, B. N.; Gorshkov, V. A. Synthesis of nuclei of the superheavy element 114 in reactions induced by 48 Ca. Nature. 1999, 400 (6741): 242. Bibcode:1999Natur.400..242O . doi:10.1038/22281 .
^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238 U, 242 Pu, and 248 Cm+48 Ca. Physical Review C. 2004, 70 : 064609. Bibcode:2004PhRvC..70f4609O . doi:10.1103/PhysRevC.70.064609 .
^ 11.0 11.1 11.2 "Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238 U , 242 Pu , and 248 Cm+48 Ca" 互联网档案馆 的存檔 ,存档日期2008-05-28., Oganessian et al. , JINR preprints , 2004. Retrieved on 2008-03-03
^ Stavsetra, L.; Gregorich, KE; Dvorak, J; Ellison, PA; Dragojević, I; Garcia, MA; Nitsche, H. Independent Verification of Element 114 Production in the 48 Ca+242 Pu Reaction. Physical Review Letters. 2009, 103 (13): 132502. Bibcode:2009PhRvL.103m2502S . PMID 19905506 . doi:10.1103/PhysRevLett.103.132502 .
^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Shirokovsky, I.; Tsyganov, Yu.; Gulbekian, G.; Bogomolov, S.; Gikal, B.; Mezentsev, A.; Iliev, S.; Subbotin, V.; Sukhov, A.; Ivanov, O.; Buklanov, G.; Subotic, K.; Itkis, M.; Moody, K.; Wild, J.; Stoyer, N.; Stoyer, M.; Lougheed, R.; Laue, C.; Karelin, Ye.; Tatarinov, A. Observation of the decay of 292 116. Physical Review C. 2000, 63 (1): 011301. Bibcode:2000PhRvC..63a1301O . doi:10.1103/PhysRevC.63.011301 .
^ 14.0 14.1 Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; et al. Synthesis of the isotopes of elements 118 and 116 in the 249 Cf and 245 Cm+48 Ca fusion reactions . Physical Review C. 2006-10-09, 74 (4): 044602 [2008-01-18 ] . Bibcode:2006PhRvC..74d4602O . doi:10.1103/PhysRevC.74.044602 . (原始内容存档 于2019-09-13).
^ see Flerov lab annual reports 2000-2006 (页面存档备份 ,存于互联网档案馆 )
^ 16.0 16.1 Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner. Formation of superheavy nuclei in cold fusion reactions. Physical Review C. 2007, 76 : 044606. Bibcode:2007PhRvC..76d4606F . arXiv:0707.2588 . doi:10.1103/PhysRevC.76.044606 .
^ Feng, Z; Jin, G; Li, J; Scheid, W. Production of heavy and superheavy nuclei in massive fusion reactions. Nuclear Physics A. 2009, 816 : 33. Bibcode:2009NuPhA.816...33F . arXiv:0803.1117 . doi:10.1016/j.nuclphysa.2008.11.003 .
^ 18.0 18.1 Zagrebaev, V. Fusion-fission dynamics of super-heavy element formation and decay (PDF) . Nuclear Physics A. 2004, 734 : 164 [2011-06-04 ] . Bibcode:2004NuPhA.734..164Z . doi:10.1016/j.nuclphysa.2004.01.025 . (原始内容 (PDF) 存档于2021-02-25).
^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. α decay half-lives of new superheavy elements. Phys. Rev. C. January 26, 2006, 73 : 014612. Bibcode:2006PhRvC..73a4612C . arXiv:nucl-th/0507054 . doi:10.1103/PhysRevC.73.014612 .
^ C. Samanta, P. Roy Chowdhury and D.N. Basu. Predictions of alpha decay half lives of heavy and superheavy elements. Nucl. Phys. A. 2007, 789 : 142–154. Bibcode:2007NuPhA.789..142S . arXiv:nucl-th/0703086 . doi:10.1016/j.nuclphysa.2007.04.001 .
^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. Search for long lived heaviest nuclei beyond the valley of stability. Phys. Rev. C. 2008, 77 : 044603. Bibcode:2008PhRvC..77d4603C . doi:10.1103/PhysRevC.77.044603 .
^ P. Roy Chowdhury, C. Samanta, and D. N. Basu. Nuclear half-lives for α-radioactivity of elements with 100 ≤ Z ≤ 130. At. Data & Nucl. Data Tables. 2008, 94 : 781–806. Bibcode:2008ADNDT..94..781C . doi:10.1016/j.adt.2008.01.003 .
Isotope masses from Ame2003 Atomic Mass Evaluation by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).
Half-life, spin, and isomer data selected from these sources. Editing notes on this article's talk page.
Audi, Bersillon, Blachot, Wapstra. The Nubase2003 evaluation of nuclear and decay properties (页面存档备份 ,存于互联网档案馆 ),Nuc. Phys. A 729, pp. 3-128 (2003).
National Nuclear Data Center, Brookhaven National Laboratory. Information extracted from the NuDat 2.1 database (页面存档备份 ,存于互联网档案馆 ) (retrieved Sept. 2005).
David R. Lide (ed.), Norman E. Holden in CRC Handbook of Chemistry and Physics, 85th Edition , online version. CRC Press. Boca Raton, Florida (2005). Section 11, Table of the Isotopes.
穩定9個
穩定6個
穩定5個
穩定4個
穩定3個
穩定2個
穩定1個
1億年〜
1万年〜
10年〜
100日〜
1日〜
1時〜
10分〜
1分〜
10秒〜
1秒〜
不到1秒
幻數
穩定9個
穩定6個
穩定5個
穩定4個
穩定3個
穩定2個
穩定1個
1億年〜
1万年〜
10年〜
100日〜
1日〜
1時〜
10分〜
1分〜
10秒〜
1秒〜
不到1秒
幻數