提升方法
提升方法(Boosting)是一种机器学习中的集成学习元启发算法,主要用来减小監督式學習中偏差并且也减小方差[1],以及一系列将弱学习器转换为强学习器的机器学习算法[2]。面對的问题是邁可·肯斯(Michael Kearns)和莱斯利·瓦利安特(Leslie Valiant)提出的:[3]一組“弱学习者”的集合能否生成一个“强学习者”?弱学习者一般是指一个分类器,它的结果只比随机分类好一点点;强学习者指分类器的结果非常接近真值。 Robert Schapire在1990年的一篇论文中[4]对肯斯和瓦利安特的问题的肯定回答在机器学习和统计方面产生了重大影响,最显着的是导致了提升方法的发展[5] 。 提升算法大多数提升算法包括由迭代使用弱学习分類器組成,並將其結果加入一個最終的成强学习分類器。加入的过程中,通常根据它们的分类准确率给予不同的权重。加和弱学习者之后,数据通常会被重新加权,来强化对之前分类错误数据点的分类。 一个经典的提升算法例子是AdaBoost。一些最近的例子包括LPBoost、TotalBoost、BrownBoost、MadaBoost及LogitBoost。许多提升方法可以在AnyBoost框架下解释为在函数空间利用一个凸的误差函数作梯度下降。 批评2008年,谷歌的菲利普·隆(Phillip Long)與哥倫比亞大學的羅可·A·瑟維迪歐(Rocco A. Servedio)发表论文指出这些方法是有缺陷的:在训练集有错误的标记的情况下,一些提升算法雖會尝试提升这种样本点的正确率,但卻無法产生一个正确率大于1/2的模型。[6] 相關條目实现
参考文献腳註
其他參考資料
外部链接
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia