一部分最成功的深度学习方法涉及到对人工神经网络的运用。人工神经网络受到了1959年由诺贝尔奖得主大卫·休伯尔(David H. Hubel)和托斯坦·威泽尔(Torsten Wiesel)提出的理论启发。休伯尔和威泽尔发现,在大脑的初级视觉皮层中存在两种细胞:简单细胞和复杂细胞,这两种细胞承担不同层次的视觉感知功能。受此启发,许多神经网络模型也被设计为不同节点之间的分层模型[26]。
卷积深度置信网络(convolutional deep belief networks,CDBN)是深度学习领域较新的分支。在结构上,卷积深度置信网络与卷积神经网络在结构上相似。因此,与卷积神经网络类似,卷积深度置信网络也具备利用图像二维结构的能力,与此同时,卷积深度信念网络也拥有深度置信网络的预训练优势。卷积深度置信网络提供了一种能被用于信号和图像处理任务的通用结构,也能够使用类似深度置信网络的训练方法进行训练[53]。
^ 3.03.13.23.3Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013, 35 (8): 1798–1828. arXiv:1206.5538.
^K. Fukushima., "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., 36, 193–202, 1980
^P. Werbos., "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences," PhD thesis, Harvard University, 1974.
^LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, 1, pp. 541–551, 1989.
^S. Hochreiter., "Untersuchungen zu dynamischen neuronalen Netzen," Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber, 1991.
^S. Hochreiter et al., "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies," In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.
^G. E. Hinton., "Learning multiple layers of representation," Trends in Cognitive Sciences, 11, pp. 428–434, 2007.
^ 20.020.1J. Schmidhuber., "Learning complex, extended sequences using the principle of history compression," Neural Computation, 4, pp. 234–242, 1992.
^J. Schmidhuber., "My First Deep Learning System of 1991 + Deep Learning Timeline 1962–2013."
^ 22.022.1D. C. Ciresan et al., "Deep Big Simple Neural Nets for Handwritten Digit Recognition," Neural Computation, 22, pp. 3207–3220, 2010.
^R. Raina, A. Madhavan, A. Ng., "Large-scale Deep Unsupervised Learning using Graphics Processors," Proc. 26th Int. Conf. on Machine Learning, 2009.
^M Riesenhuber, T Poggio. Hierarchical models of object recognition in cortex. Nature neuroscience, 1999(11) 1019–1025.
^Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4):541–551, 1989.
^S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich, 1991. Advisor: J. Schmidhuber
^S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.
^Graves, Alex; and Schmidhuber, Jürgen; Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), Advances in Neural Information Processing Systems 22 (NIPS'22), December 7th–10th, 2009, Vancouver, BC, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552
^A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, 2009.
^ 39.039.1D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, J. Schmidhuber. Flexible, High Performance Convolutional Neural Networks for Image Classification. International Joint Conference on Artificial Intelligence (IJCAI-2011, Barcelona), 2011.
^Martines, H., Bengio, Y., & Yannakakis, G. N. (2013). Learning Deep Physiological Models of Affect. I EEE Computational Intelligence, 8(2), 20.
^D. C. Ciresan, U. Meier, J. Masci, J. Schmidhuber. Multi-Column Deep Neural Network for Traffic Sign Classification. Neural Networks, 2012.
^D. C. Ciresan, U. Meier, J. Schmidhuber. Multi-column Deep Neural Networks for Image Classification. IEEE Conf. on Computer Vision and Pattern Recognition CVPR 2012.
^T. Mikolov et al., "Recurrent neural network based language model," Interspeech, 2010.
^Y. LeCun et al., "Gradient-based learning applied to document recognition," Proceedings of the IEEE, 86 (11), pp. 2278–2324.
^T. Sainath et al., "Convolutional neural networks for LVCSR," ICASSP, 2013.
^G. E. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The shared views of four research groups," IEEE Signal Processing Magazine, pp. 82–97, November 2012.
^Y. Bengio et al., "Advances in optimizing recurrent networks," ICASSP', 2013.
^G. Dahl et al., "Improving DNNs for LVCSR using rectified linear units and dropout," ICASSP', 2013.
^ 49.049.149.2G. E. Hinton., "A Practical Guide to Training Restricted Boltzmann Machines," Tech. Rep. UTML TR 2010-003, Dept. CS., Univ. of Toronto, 2010.
^H. Larochelle et al., "An empirical evaluation of deep architectures on problems with many factors of variation," in Proc. 24th Int. Conf. Machine Learning, pp. 473–480, 2007.
^Honglak Lee; Roger Grosse; Rajesh Ranganath; Andrew Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML '09. 2009: 609–616.
^TIMIT Acoustic-Phonetic Continuous Speech Corpus
Linguistic Data Consortium, Philadelphia.
^J. Shrager, MH Johnson., "Dynamic plasticity influences the emergence of function in a simple cortical array," Neural Networks, 9 (7), pp. 1119–1129, 1996
^SR Quartz and TJ Sejnowski., "The neural basis of cognitive development: A constructivist manifesto," Behavioral and Brain Sciences, 20 (4), pp. 537–556, 1997.
^S. Blakeslee., "In brain's early growth, timetable may be critical," The New York Times, Science Section, pp. B5–B6, 1995.
^{BUFILL} E. Bufill, J. Agusti, R. Blesa., "Human neoteny revisited: The case of synaptic plasticity," American Journal of Human Biology, 23 (6), pp. 729–739, 2011.
^J. Shrager and M. H. Johnson., "Timing in the development of cortical function: A computational approach," In B. Julesz and I. Kovacs (Eds.), Maturational windows and adult cortical plasticity, 1995.