序列紧在數學上, 若一個拓撲空間裏,每個無窮序列都有收斂子序列,則稱該拓撲空間序列緊(英語:sequentially compact)。 雖然對於度量空間,緊等價於序列緊,但是對於一般的拓撲空間來說,緊(英語:compact)和序列緊是兩個不等價的性質。 例子和性質實數軸上的標準拓撲不是序列緊的,例如 (sn = n) 便是一個沒有收斂子序列的序列。但由波爾查諾-魏爾斯特拉斯定理可知所有上的閉區間導出的子空間拓撲都是序列緊的。 對於度量空間,序列緊與緊等價。[1] 然而,一般情況下,存在序列緊而非緊的拓撲空間,比如具有序拓撲的首個不可數序數,也存在緊而非序列緊的拓撲空間,比如由 多個單位閉區間組成的積空間。[2] 有關概念對於度量空間,序列緊、聚點緊、可數緊、緊都是互相等價的性質。[3] 單點緊化的構想是,在拓撲空間中加入一點,然後要求所有無收斂子序列的序列都收斂到該額外的點。 [5]例如實數軸的單點緊化,它令所有在標準拓撲不收斂的序列收斂至額外的點,該點又稱為無窮遠點。 相關條目參考來源
參考書目
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia