多面體半形多面體半形,為一類型的射影多面體,同時也是抽象多面體。其可透過將點對稱的球面多面體進行對映映射後得到。多面體半形的面數只有原多面體的一半,而且投影平面上位於邊緣的對角頂點、對角邊、對角面皆視為相同幾何元素。存在半形體的多面體的必要條件為其原像須具備點對稱的特性,而向正四面體不具備點對稱的特性[1],因此正四面體不存在半形體。 性質若兩多面體互為對偶多面體,則其對應的半形體也互為對偶多面體。例如立方體與正八面體互為對偶多面體,則立方體半形與正八面體半形也互為對偶多面體。多面體的半形體皆為不可定向圖形。[2] 種類正多面體半形除了正四面體外,其他正多面體都存在半形體[3][4][5][6]。
均勻多面體半形
多面形半形多面形是一種球面多面體,由球面的一點與其對蹠點相連接而成,並將球面分成多個部分。若球面被分割的數量為偶數,則該多面形存在半形體。例如二面形、四面形、六面形等多面形皆存在半形體。[9] 前幾個多面形半形性質如下:
多邊形二面體半形多邊形二面體是指多邊形在三維空間中不會僅有一個面,其正面與反面會成對出現,因此稱為多邊形二面體。而成對出現的面(正面與反面)則滿足多面體半形的定義,僅要原始多邊形具備點對稱特性及可取半形,例如正方形二面體可以取半形體,成為正方形二面體半形。[9][14] 多邊形二面體半形是一種多面體半形,屬於抽象正多面體,有著多邊形二面體一半的面。其對應於圖論中的循環圖。[15]僅有偶數邊數的多邊形二面體可以存在多面體半形。2p邊形二面體半形具有1個面、p條邊和p個頂點,虧格為1,在施萊夫利符號中可以用{2p,2}/2表示。[9][15] 前幾個多邊形二面體半形性質如下:
參考文獻
外部連結 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia