吠陀方形吠陀方形(Vedic square)屬於古印度數學,是9 × 9 乘法表的變形,每個數字都用乘積的數根來代替。換句話說,與乘積除以9以後的余数的概念接近,若是該乘積為9的倍數,其數根為9不為0。 吠陀方形中有許多幾何模式及對稱特性,其中有些模式會出現在傳統的伊斯蘭藝術[1]。
代數性質吠陀方形可以視為是幺半群的乘法表,其中是整數除以9後所可能的餘數(運算元是指幺半群元素之間的抽象乘法) 若是 的元素,則可以定義為,其中元素9表示其除以9以後餘數為0,而不用傳統的0來表示。 這個幺半群不是數學上的群,因為不是每一個非零元素都有對應的逆元素,例如,但不存在使得。 子集的性質子集形成循環群。每一行及每一列都恰好有六個相異的數字,因此這個子集也是拉丁方陣。
三維的吠陀立方吠陀立方定義為三維乘法表中,用每個乘積的數根來代替乘積[2][3]。 相關條目參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia