卡漢常數
卡漢常數(英語:Cahen's constant)是一個用正負號交替的無窮級數定義的常數,级数的各項是單位分數,分母為西爾維斯特數列的各項減1: 若二項二項的考慮上述級數,可以將卡漢常數視為由西爾維斯特數列偶數項為分母的正單位分數形成的級數,卡漢常數的數列為其古埃及分數的貪心法分解: 此常數是由尤金·卡漢(Eugène Cahen)定義,也稱為卡漢-梅林積分(Cahen-Mellin integral),他最早觀察到此一級數(Cahen 1891)。 連分數展開卡漢常數已知是超越數,其著名之處是它是自然出現的超越數中,少數可以求得完整连分数展開的數,若定義以下數列 定義方式是由以下的遞迴關係式 則卡漢常數的连分数展開可以表示如下: Davison和Jeffrey Shallit曾用上述的連分數展開證明卡漢常數是超越數。 (Davison & Shallit 1991). 參考資料
外部連結
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia