Поро́джувальний попере́дньо трено́ваний трансфо́рмер 3 (англ.Generative Pre-trained Transformer 3, GPT-3) — це авторегресійнамодель мови, яка використовує глибоке навчання, щоби виробляти текст, подібний до людського. Вона є мовною передбачувальною моделлю третього покоління в серії GPT-n, створеній OpenAI, лабораторією досліджень штучного інтелекту в Сан-Франциско.[4] Повна версія GPT-3 має ємність у 175 мільярдів параметрів машинного навчання. GPT-3, яку було представлено в травні 2020 року і яка перебуває в бета-тестуванні станом на липень 2020 року[5], є частиною тенденції попереднього тренування представлень мови в системах обробки природної мови (ОПМ)[1]. Перед випуском GPT-3 найбільшою мовною моделлю була Turing NLG Microsoft, представлена в лютому 2020 року, з ємністю в 17 мільярдів параметрів, або менш ніж 10 % у порівнянні з GPT-3[6].
Якість тексту, породжуваного GPT-3, є настільки високою, що його складно відрізнити від тексту, написаного людиною, що несе як переваги, так і ризики[6]. Оригінальну працю 28 травня 2020 року, яка представила GPT-3, презентували тридцять один дослідник та інженер OpenAI. У своїй праці вони попередили про небезпеки потенціалу GPT-3, й закликали провести дослідження з метою зниження ризику.[1]:34Девід Чалмерс, австралійський філософ, описав GPT-3 як «одну із найцікавіших та найважливіших систем ШІ з будь-коли зроблених».[7]
22 вересня 2020 року Microsoft оголосила, що отримала ліцензію на «ексклюзивне» використання GPT-3; інші все ще можуть використовувати цей загальнодоступний ППІ для отримування виходу, але лише Microsoft має контроль над первинним кодом.[8]
Передісторія
Згідно журналу «Економіст», вдосконалені алгоритми, потужні комп'ютери, та збільшення оцифрованих даних спричинили революцію у машинному навчанні, завдяки чому нові методики призвели 2010 року до «швидкого вдосконалення в задачах», включно з маніпулюванням мовою.[9] Програмні моделі тренуються навчатися, використовуючи тисячі або мільйони зразків у «структурі,… що в загальних рисах ґрунтується на нейронній архітектурі мозку».[9] Однією з архітектур, які використовують в обробці природної мови (ОПМ), є нейронна мережа, що ґрунтується на моделі глибокого навчання, вперше представлена 2017 року —Трансформер.[10] Моделі GPT-n ґрунтуються на цій нейромережній архітектурі глибокого навчання на основі Трансформера. Існує низка систем ОПМ, здатних оброблювати, видобувати, впорядковувати, з'єднувати, протиставляти, розуміти, та породжувати відповіді на питання.[11]
11 червня 2018 року дослідники та інженери OpenAI опублікувати свою оригінальну працю про породжувальні моделі — мовні моделі — системи штучного інтелекту — які може бути попередньо треновано величезним та різноманітним корпусом тексту через набори даних, у процесі, який вони назвали породжувальним попереднім тренуванням (англ.generative pre-training, GP).[12] Ці автори описали, як в GPT-n було покращено продуктивності розуміння мови в обробці природної мови (ОПМ) за допомогою процесу «породжувального попереднього тренування моделі мови на різноманітнім корпусі неміченого тексту, з подальшим розрізнювальнимтонким налаштуванням на для кожної конкретної задачі». Це усунуло потребу в людському керуванні та тривалому міченні вручну.[12]
В лютому 2020 року Microsoft представила своє Тюрінгове породжування природної мови (англ.Turing Natural Language Generation, T-NLG), що було на той момент «найбільшою моделлю мови з будь-коли опублікованих, із 17 мільярдами параметрів».[13] Вона працювала краще за будь-яку іншу модель мови на різноманітних задачах, до яких належали автоматизоване реферування та відповідання на питання.[13]
Можливості
Сигнальний примірник arXiv 28 травня 2020 року від групи з 31 інженера та дослідника OpenAI[a] описав розробку GPT-3, «моделі мови найвищого рівня» третього покоління.[1][6] Ця команда збільшила ємність GPT-3 на понад два порядки відносно її попередниці, GPT-2,[14] зробивши GPT-3 найбільшою нерозрідженою[прояснити] моделлю мови на той момент.[1]:14[4] Вище число параметрів GPT-3 дає їй вищий рівень точності відносно попередніх версій із меншою ємністю.[15] Ємність GPT-3 є в десять разів більшою за Тюрінгове ППМ Microsoft.[6]
Шістдесят відсотків зваженого набору даних попереднього тренування GPT-3 походить із відфільтрованої версії Common Crawl[en], що складається з 410 мільярдів діграмно кодованих[en] лексем[1]:9. Іншими джерелами є 19 мільярдів лексем з WebText2, що представляють 22 % зваженого загального, 12 мільярдів лексем з Books1, що представляють 8 %, 55 мільярдів лексем з Books2, що представляють 8 %, та 3 мільярди лексем із Вікіпедії, що представляють 3 %[1]:9. GPT-3 треновано на сотнях мільярдів слів, і вона здатна, серед іншого, писати код мовами CSS, JSX та Python[5]. Оскільки тренувальні дані GPT-3 були всеосяжними, вона не вимагає подальшого тренування для окремих мовних задач[5].
11 червня 2020 року OpenAI оголосила, що користувачі можуть робити запити на доступ до їхнього дружнього ППІGPT-3 — «набору інструментів машинного навчання» (англ.«machine learning toolset») — щоби допомогти OpenAI «дослідити сильні сторони та межі» цієї нової технології.[16][17] Це запрошення описувало, що цей ППІ мав інтерфейс загального призначення «текст на вході, текст на виході», що може виконувати майже «будь-яку задачу для англійської мови», замість звичного єдиного сценарію використання.[16] Згідно з одним користувачем, який мав доступ до приватного раннього випуску ППІ GPT-3 OpenAI, GPT-3 була «моторошно доброю» в написанні «напрочуд зв'язного тексту», маючи лише декілька простих підказок[18].
Оскільки GPT-3 може «породжувати новинні статті, які оцінювачам-людям складно відрізнити від статей, написаних людьми»,[6]GPT-3 має «потенціал створити прогрес як у корисних, так і в шкідливих застосуваннях моделей мови».[1]:34 У своїй праці від 28 травня 2020 року дослідники описали в деталях потенційні «шкідливі впливи GPT-3»,[6] до яких належать «дезінформація, спам, фішинг, зловживання правовими та державними процесами[en], написання шахрайських академічних есе[en] та соціально-інженерний претекстинг».[1] Автори привернули увагу до цих небезпек, щоби закликати до дослідження стосовно зниження ризику.[1]:34
Огляди
У своєму огляді 29 липня 2020 року в «Нью-Йорк таймс»Фархад Манджу[en] сказав, що GPT-3, яка може породжувати комп'ютерний код та поезію, так само як і прозу, є не просто «дивовижною», «моторошною» та «принижувальною», але й також «більш ніж трохи жахальною»[19].
«Дейлі Ноус» представив низку статей про GPT-3 від дев'яти філософів.[20] Австралійський філософ Девід Чалмерс описав GPT-3 як «одну із найцікавіших та найважливіших систем ШІ з будь-коли зроблених».[7]
У статті в «Towards Data Science» зазначено, що GPT-3 треновано на сотнях мільярдів слів, і що вона здатна писати код мовами CSS, JSX, Python, та іншими[5].
У «National Law Review»[en] сказано, що GPT-3 є «вражаючим кроком у масштабнішому процесі», і що OpenAI та інші перебувають у пошуку «корисних застосувань для всієї цієї потужності», в той же час продовжуючи «працювати в напрямку сильнішого інтелекту».[22]
У статті в «MIT Technology Review», написаній у співавторстві з критиком глибокого навчанняҐері Маркусом[en],[23] зазначено стосовно GPT-3, що її «розуміння світу є часто дуже бідним, що означає, що ви ніколи не можете насправді довіряти тому, що вона каже».[24] Згідно цих авторів, GPT-3 моделює взаємозв'язки між словами, не маючи розуміння значення, що стоїть за кожним словом.
Джером Пезенті, голова лабораторії Facebook A.I., сказав, що GPT-3 є «не безпечною», вказавши на сексистські, расистські та інші упередження й негативний тон, породжувані цією системою, коли її просили обговорити євреїв, жінок, чорношкірих та Голокост.[25]
GPT-3 використано Джейсоном Рорером[en] в стилізованім під ретро проєкті чатботу, названім «Project December» («Проєкт Грудень»), що є доступним онлайн і дозволяє користувачам спілкуватися з декількома ШІ за допомогою технології GPT-3.
GPT-3 використано «Ґардіан» для написання статті про те, що ШІ є нешкідливим для людей. Їй згодовано декілька ідей, і вона виробила вісім різних есе, які в підсумку об'єднано в одну статтю[26].
GPT-3 використовують у AI Dungeon (Темниця ШІ), що породжує текстові пригодницькі ігри.
GPT-3 використовується для написання текстів та інших маркетингових матеріалів стартапами Copy.ai,[27] Jasper.ai,[28], TextCortex AI[29] та Hypotenuse AI.[30]
↑ абвгBussler, Frederik (21 липня 2020). Will GPT-3 Kill Coding?. Towards Data Science. Архів оригіналу за 19 серпня 2020. Процитовано 1 серпня 2020. (англ.)
↑ абChalmers, David (30 липня 2020). Weinberg, Justin (ред.). GPT-3 and General Intelligence. Daily Nous. Philosophers On GPT-3 (updated with replies by GPT-3). Архів оригіналу за 4 серпня 2020. Процитовано 4 серпня 2020. (англ.)
↑Hao, Karen (23 вересня 2020). OpenAI is giving Microsoft exclusive access to its GPT-3 language model. MIT Technology Review(англ.). Архів оригіналу за 5 лютого 2021. Процитовано 25 вересня 2020. Компанії заявляють, що OpenAI продовжуватиме пропонувати свій публічний ППІ, що дозволяє обраним користувачам надсилати текст до GPT-3 або інших моделей OpenAI та отримувати їхній вихід. Проте лише Microsoft матиме доступ до коду, що лежить в основі GTP-3, що дозволяє їм вбудовувати, перепрофільовувати та змінювати модель, як їм заманеться.(англ.)
↑ абOpenAI API. OpenAI. 11 червня 2020. Архів оригіналу за 11 червня 2020. Процитовано 30 жовтня 2020. (англ.)
↑TechCrunch – Startup and Technology News. TechCrunch. 11 червня 2020. Архів оригіналу за 12 червня 2020. Процитовано 31 липня 2020. Якщо ви коли-небудь хотіли спробувати хвалений набір інструментів машинного навчання OpenAI, то це стало набагато простішим. Ця компанія випустила ППІ, що дає можливість розробникам робити виклики її інструментів ШІ у „практично будь-якій задачі для англійської мови“.(англ.)