Граф Дезарга
Граф Дезарга у теорії графів — це дистанційно-транзитивний кубічний граф з 20 вершинами та 30 ребрами.[1] Названий на честь Жерара Дезарга. Граф виникає з декількох різних комбінаторних конструкцій, має високий рівень симетрії, є єдиним відомим непланарним частковим кубом, а також доданий до хімічних баз даних. Назва «Граф Дезарга» також використовується для опису десяти-вершинного графу, додатку до графу Петерсона, що також може бути сформованим як двостороння половина[en] 20 вершинного графу Дезарга.[2] КонструкціяІснує декілька різних варіантів побудови графу Дезарга:
Алгебраїчні властивостіГраф Дезарга — це симетричний граф: так кожна вершина симетрична будь-якій іншій вершині, сторона — будь-якій іншій стороні. Його група симетрії має порядок 240 і ізоморфна добутку симетричної групи на 5 пунктів з групою порядку 2. Можна інтерпретувати це подання продукту групи симетрії у вираженні конструкцій графу Дезарга: симетрична група з п'яти точок — це симетрична група конфігурації Дезарга, і підгрупа другого порядку змінює місцями ролі вершин, що представляють точки конфігурації Дезарга і вершин, які представляють лінії. Крім того, з точки зору двостороннього графу Кнезера, симетрична група з п'яти точок діє окремо на двох-елементні та три-елементні підмножини з п'яти точок, і доповнення підмножин утворює групу другого порядку, що перетворює один вид підмножини в інший. Симетрична група з п'яти точок також є групою симетрії графу Петерсена, і підгрупа другого порядку міняє місцями вершини з кожної пари вершин, утворених у конструкції подвійного накриття. Узагальнений граф Петерсена g(n, k) є транзитивним по вершинах тоді і тільки тоді, коли k = 2 або k2 ≡ ±1 (mod n) і транзитивний по сторонах тільки у наступних семи випадках: (n, k) = (4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).[3] Отже, Граф Дезарга є лише одним з семи узагальнених симетричних графів Петерсона. Серед цих семи графів є кубічний граф G(4, 1), граф Петерсена G(5, 2), граф Мебіуса — Кантора G(8, 3), граф-додекаедр G(10, 2)та граф Науру G(12, 5). Характеристичний поліном графу Дезарга Тому граф Дезарга — це цілий граф: його спектр складається лише з цілих чисел. ЗастосуванняУ хімії граф Дезарга відомий як граф Дезарга — Леві, він використовується для організації систем стереоізомерів 5-лігандних з'єднань. У цьому застосуванні 30 сторін графу відповідають псевдообертанню ліганд.[4][5] Інші властивостіГраф Дезарга має 6 прямолінійних перетинів і є найменшим кубічним графом з такою кількістю перетинів (послідовність A110507 з Онлайн енциклопедії послідовностей цілих чисел, OEIS). Це єдиний відомий неплоский частково кубічний граф.[6] Граф Дезарга має хроматичне число 2 , хроматичний індекс 3 , радіус 5, діаметр 5 і обхват 6. Також він є 3-вершинно-зв'язним та 3-реберно-зв'язним графом Гамільтона. Усі кубічні дистанційно-регулярні графи відомі.[7] Граф Дезарга — 1 з 13 таких графів. Граф Дезарга може бути вбудований як самостійна подвійна мапа Петрі у неорієнтованому многовиді шостого роду з декагональними зовнішніми сторонами. Галерея
Див. такожПримітки
|
Portal di Ensiklopedia Dunia