Граничні умови Діріхле

Межові умови Діріхле або межові умови першого роду — межові умови звичайного диференційного рівняння або диференційного рівняння в часткових похідних, в яких на межі визначається значення невідомої функції.

У випадку рівняння в часткових похідних межові умови можуть задаватися на якомусь контурі або поверхні, а тому можуть бути функцією, визначеному на цьому контурі чи поверхні.

Названі на честь Діріхле.

Приклад

ЗДР

Для звичайного диференціального рівняння, наприклад:

межові умови Діріхле на проміжку набувають вигляду:

де and  — задані числа.

ЧДР

Для диференціальних рівнянь із частинними похідними, наприклад:

де позначає оператор Лапласа, межові умови Діріхле для області набувають вигляду:

де f є відомою функцією визначеною на межі .

Дивись також

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia