ВідношенняВідношення — математична структура, що формально визначає властивості різних об'єктів і їхні взаємозв'язки. Поширеними прикладами відношень у математиці є рівність (=), подільність, подібність, паралельність і багато інших. Поняття відношення як підмножини декартового добутку формалізовано в теорії множин і набуло широкого поширення в мові математики у всіх її гілках. Теоретико-множинний погляд на відношення характеризує його з точки зору обсягу — якими комбінаціями елементів воно наповнене; змістовний підхід розглядається в математичній логіці, де відношення — пропозиційна функція, тобто вираз з невизначеними змінними, підстановка конкретних значень для яких робить його істинним або хибним. Важливу роль відношення відіграють в універсальній алгебрі, де базовий об'єкт вивчення розділу — множина з довільним набором операцій та відношень. Одне з найяскравіших застосувань техніки математичних відношень в прикладах — реляційні системи керування базами даних, методологічно засновані на формальній алгебрі відношень. Формальні означення і позначення-місним (-арним) відношенням , що задане на множинах , називається підмножина декартового добутку цих множин: . Факт зв'язку елементів відношенням позначається або . Факт зв'язку об'єктів і бінарним відношенням зазвичай позначають за допомогою інфіксного запису: . Одномісні (унарні) відношення відповідають властивостям або атрибутам, як правило, для таких випадків термінологія відношень не використовується. Іноді використовуються тримісні відношення (тернарні), чотиримісні відношення (кватернарні); про відношення невизначено високої арності говорять як про «мультиарні», «багатомісні». Універсальне відношення — це відношення, що зв'язує усі елементи заданих множин, тобто, таке, що збігається з декартовим добутком: . Нуль-відношення — відношення, що не зв'язує жодні елементи, тобто порожня множина: . Функціональне відношення — відношення, що утворює функцію: є функціональним, якщо виконання та має наслідком (це забезпечує єдиність значення функції). Унарне відношенняПри n=1 відношення R⊆M називають одномісним або унарним. Таке відношення часто називають також ознакою або характеристичною властивістю елементів множини M. Кажуть, що елемент a∈M має ознаку R, якщо a∈R і R⊆M. Бінарне відношенняДокладніше дивись статтю Бінарне відношення Широко вживаними в математиці та прикладних науках є двомісні або бінарні відношення (тобто відношення з n=2) Якщо елементи a, b∈M знаходяться в бінарному відношенні R (тобто визначена впорядкована пара (a, b)∈R), то це часто записують у вигляді aRb. Слід зауважити також, що бінарні відношення іноді розглядають, як окремий випадок відповідностей, а саме — як відповідності між однаковими множинами. Приклади бінарних відношень на множині натуральних чисел N:
Див. такожДжерела
|