รายการปริพันธ์ของฟังก์ชันตรีโกณมิติ
ต่อไปนี้เป็นรายการปริพันธ์ (ฟังก์ชันปฏิยานุพันธ์) ของฟังก์ชันตรีโกณมิติ โดยทั่วไป ถ้าฟังก์ชัน เป็นฟังก์ชันตรีโกณมิติใด ๆ และ เป็นอนุพันธ์ของมัน แล้ว
![{\displaystyle \int a\cos nx\,dx={\frac {a}{n}}\sin nx+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b235833736ee6579828397cf22e6a166efb867be)
ในทุกสูตร กำหนดให้ ค่าคงตัว a เป็นจำนวนที่ไม่ใช่ศูนย์ และ C เป็นค่าคงตัวของการหาปริพันธ์
ปริพัทธ์ที่เกี่ยวข้องเฉพาะไซน์
![{\displaystyle \int \sin ax\,dx=-{\frac {1}{a}}\cos ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17155f417f1407848abf8090096e58430a91d17a)
![{\displaystyle \int \sin ^{2}{ax}\,dx={\frac {x}{2}}-{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}-{\frac {1}{2a}}\sin ax\cos ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/94366ec919d67a0f06bb6431029d29b096de77bb)
![{\displaystyle \int \sin ^{3}{ax}\,dx={\frac {\cos 3ax}{12a}}-{\frac {3\cos ax}{4a}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da591fb70e83503367cffa5f8df86754f0181d86)
![{\displaystyle \int x\sin ^{2}{ax}\,dx={\frac {x^{2}}{4}}-{\frac {x}{4a}}\sin 2ax-{\frac {1}{8a^{2}}}\cos 2ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5aedf47e3b2a17b7f494177d2af59abf5546799)
![{\displaystyle \int x^{2}\sin ^{2}{ax}\,dx={\frac {x^{3}}{6}}-\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax-{\frac {x}{4a^{2}}}\cos 2ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3902717b8ce182f19cd31aba15f8d9a1cfb72f04)
![{\displaystyle \int (\sin b_{1}x)(\sin b_{2}x)\,dx={\frac {\sin((b_{2}-b_{1})x)}{2(b_{2}-b_{1})}}-{\frac {\sin((b_{1}+b_{2})x)}{2(b_{1}+b_{2})}}+C\qquad {\mbox{(สำหรับ }}|b_{1}|\neq |b_{2}|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/660cfd0fd1354cf80b1d7a961c98eb3b8acd1471)
![{\displaystyle \int \sin ^{n}{ax}\,dx=-{\frac {\sin ^{n-1}ax\cos ax}{na}}+{\frac {n-1}{n}}\int \sin ^{n-2}ax\,dx\qquad {\mbox{(สำหรับ }}n>0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e4ce05642386484dab216ee6bee7a1dfb5eb9a8)
![{\displaystyle \int {\frac {dx}{\sin ax}}=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39a4cc7433bffdc5cb3e9a1e92fb0990988bce7d)
![{\displaystyle \int {\frac {dx}{\sin ^{n}ax}}={\frac {\cos ax}{a(1-n)\sin ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}ax}}\qquad {\mbox{(สำหรับ }}n>1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a39218fdb4f849bbff6efb1159be8b28fdb6d2)
![{\displaystyle \int x\sin ax\,dx={\frac {\sin ax}{a^{2}}}-{\frac {x\cos ax}{a}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a98562978db18283202b5ee81589cf1c2dc28d4)
![{\displaystyle {\begin{aligned}\int x^{n}\sin ax\,dx&=-{\frac {x^{n}}{a}}\cos ax+{\frac {n}{a}}\int x^{n-1}\cos ax\,dx\\&=\sum _{k=0}^{2k\leq n}(-1)^{k+1}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\cos ax+\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-1-2k}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\sin ax\\&=-\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(สำหรับ }}n>0{\mbox{)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4abd6d601edd137eca3800bdb20dcf52cab9b4f)
![{\displaystyle \int {\frac {\sin ax}{x}}\,dx=\sum _{n=0}^{\infty }(-1)^{n}{\frac {(ax)^{2n+1}}{(2n+1)\cdot (2n+1)!}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7dba87ad697f99f043327f310fe9b7b966fd7943)
![{\displaystyle \int {\frac {\sin ax}{x^{n}}}\,dx=-{\frac {\sin ax}{(n-1)x^{n-1}}}+{\frac {a}{n-1}}\int {\frac {\cos ax}{x^{n-1}}}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1dcfdaf90a90cb3d3e38a3865f92682ab04da8e)
![{\displaystyle \int {\frac {dx}{1\pm \sin ax}}={\frac {1}{a}}\tan \left({\frac {ax}{2}}\mp {\frac {\pi }{4}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c8439ef42a168ed7e05a7efea83b205790ceb59)
![{\displaystyle \int {\frac {x\,dx}{1+\sin ax}}={\frac {x}{a}}\tan \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{a^{2}}}\ln \left|\cos \left({\frac {ax}{2}}-{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d08dadaff5165e64f02d1efcc3a48ab10c8c8f9e)
![{\displaystyle \int {\frac {x\,dx}{1-\sin ax}}={\frac {x}{a}}\cot \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)+{\frac {2}{a^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {ax}{2}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2037a630f830c597c4126f076edd449c8967fbea)
![{\displaystyle \int {\frac {\sin ax\,dx}{1\pm \sin ax}}=\pm x+{\frac {1}{a}}\tan \left({\frac {\pi }{4}}\mp {\frac {ax}{2}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1baffb49b75cb47bcc18564e62c50ad40cc37c11)
ปริพัทธ์ที่เกี่ยวข้องเฉพาะโคไซน์
![{\displaystyle \int \cos ax\,dx={\frac {1}{a}}\sin ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/76fe3b3af800a174faece0db14fcdded789dc979)
![{\displaystyle \int \cos ^{2}{ax}\,dx={\frac {x}{2}}+{\frac {1}{4a}}\sin 2ax+C={\frac {x}{2}}+{\frac {1}{2a}}\sin ax\cos ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5a154836333fe3188bc000c0cfe80b86fc8915)
![{\displaystyle \int \cos ^{n}ax\,dx={\frac {\cos ^{n-1}ax\sin ax}{na}}+{\frac {n-1}{n}}\int \cos ^{n-2}ax\,dx\qquad {\mbox{(สำหรับ }}n>0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5b2d6755804257d4a14c80d65bad0ffb4289508)
![{\displaystyle \int x\cos ax\,dx={\frac {\cos ax}{a^{2}}}+{\frac {x\sin ax}{a}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d58daa2d9b221f46b811e2a25309b0fcb64c678)
![{\displaystyle \int x^{2}\cos ^{2}{ax}\,dx={\frac {x^{3}}{6}}+\left({\frac {x^{2}}{4a}}-{\frac {1}{8a^{3}}}\right)\sin 2ax+{\frac {x}{4a^{2}}}\cos 2ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a82a134604ff47f5aecb2a44a092592d160dfc)
![{\displaystyle {\begin{aligned}\int x^{n}\cos ax\,dx&={\frac {x^{n}\sin ax}{a}}-{\frac {n}{a}}\int x^{n-1}\sin ax\,dx\\&=\sum _{k=0}^{2k+1\leq n}(-1)^{k}{\frac {x^{n-2k-1}}{a^{2+2k}}}{\frac {n!}{(n-2k-1)!}}\cos ax+\sum _{k=0}^{2k\leq n}(-1)^{k}{\frac {x^{n-2k}}{a^{1+2k}}}{\frac {n!}{(n-2k)!}}\sin ax\\&=\sum _{k=0}^{n}(-1)^{\lfloor k/2\rfloor }{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\cos \left(ax-{\frac {(-1)^{k}+1}{2}}{\frac {\pi }{2}}\right)\\&=\sum _{k=0}^{n}{\frac {x^{n-k}}{a^{1+k}}}{\frac {n!}{(n-k)!}}\sin \left(ax+k{\frac {\pi }{2}}\right)\qquad {\mbox{(สำหรับ }}n>0{\mbox{)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e76b8001f4c1e225f9fb459403e1c77c7f5ab0b)
![{\displaystyle \int {\frac {\cos ax}{x}}\,dx=\ln |ax|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(ax)^{2k}}{2k\cdot (2k)!}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d82b8c7f2081edd47994c4c5600916e3800fb48)
![{\displaystyle \int {\frac {\cos ax}{x^{n}}}\,dx=-{\frac {\cos ax}{(n-1)x^{n-1}}}-{\frac {a}{n-1}}\int {\frac {\sin ax}{x^{n-1}}}\,dx\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07651582ede6815e697431716c2c80b2886ac8d1)
![{\displaystyle \int {\frac {dx}{\cos ax}}={\frac {1}{a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e5013bc2428b1006b40c999d6b427a36f5cf0620)
![{\displaystyle \int {\frac {dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(สำหรับ }}n>1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64d71ba4212a0f218a005361174e1f2b651b343f)
![{\displaystyle \int {\frac {dx}{1+\cos ax}}={\frac {1}{a}}\tan {\frac {ax}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41a971cb7f555d9f48a9f2b820bcc7fe53f2436c)
![{\displaystyle \int {\frac {dx}{1-\cos ax}}=-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6a8d0cb833e9a78d8ea6ff57d1ce08c44aaa09c7)
![{\displaystyle \int {\frac {x\,dx}{1+\cos ax}}={\frac {x}{a}}\tan {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\cos {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d39822052ca12c117f7121ef13f59d7fadd8ace)
![{\displaystyle \int {\frac {x\,dx}{1-\cos ax}}=-{\frac {x}{a}}\cot {\frac {ax}{2}}+{\frac {2}{a^{2}}}\ln \left|\sin {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0c71e740a637ad718742a884ab0284c19dcf861)
![{\displaystyle \int {\frac {\cos ax\,dx}{1+\cos ax}}=x-{\frac {1}{a}}\tan {\frac {ax}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/868e1340952b82a678a6ca4c964455ffdb51ec09)
![{\displaystyle \int {\frac {\cos ax\,dx}{1-\cos ax}}=-x-{\frac {1}{a}}\cot {\frac {ax}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/376acd5ba6dda72e5511ca987900ff39f82c3462)
![{\displaystyle \int (\cos a_{1}x)(\cos a_{2}x)\,dx={\frac {\sin((a_{2}-a_{1})x)}{2(a_{2}-a_{1})}}+{\frac {\sin((a_{2}+a_{1})x)}{2(a_{2}+a_{1})}}+C\qquad {\mbox{(สำหรับ }}|a_{1}|\neq |a_{2}|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/704eb08ba80c9b96db6e14f602aa3748519543a3)
![{\displaystyle \int \tan ax\,dx=-{\frac {1}{a}}\ln |\cos ax|+C={\frac {1}{a}}\ln |\sec ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b34ce80d93081408154a153d81d896074b17aae3)
![{\displaystyle \int \tan ^{2}{x}\,dx=\tan {x}-x+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83b8d69c24a94eed938f2e751572e874aff74f7f)
![{\displaystyle \int \tan ^{n}ax\,dx={\frac {1}{a(n-1)}}\tan ^{n-1}ax-\int \tan ^{n-2}ax\,dx\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68d559ebef0c409eff372f79be53e2ab2d991047)
![{\displaystyle \int {\frac {dx}{q\tan ax+p}}={\frac {1}{p^{2}+q^{2}}}(px+{\frac {q}{a}}\ln |q\sin ax+p\cos ax|)+C\qquad {\mbox{(สำหรับ }}p^{2}+q^{2}\neq 0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/32371c5b895e7ead50163088b8a6cc15490eea12)
![{\displaystyle \int {\frac {dx}{\tan ax+1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5177a72f599e3f7a16ed7e208f5688a7bfd1175d)
![{\displaystyle \int {\frac {dx}{\tan ax-1}}=-{\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1ad458ce6b433ead7a78170d1dd49c93f195fbe0)
![{\displaystyle \int {\frac {\tan ax\,dx}{\tan ax+1}}={\frac {x}{2}}-{\frac {1}{2a}}\ln |\sin ax+\cos ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8c763ddd2f8649cceb3e1d7b191f32d3ac048a33)
![{\displaystyle \int {\frac {\tan ax\,dx}{\tan ax-1}}={\frac {x}{2}}+{\frac {1}{2a}}\ln |\sin ax-\cos ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/723fb1c206f0b9566cd168b31c0476902752c9a1)
![{\displaystyle \int \sec {ax}\,dx={\frac {1}{a}}\ln {\left|\sec {ax}+\tan {ax}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6a0eae695334d259040d728b565ca374a2c89380)
![{\displaystyle \int \sec ^{2}{x}\,dx=\tan {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62448efb9e0512c1014643b2efa34928c397f1b0)
![{\displaystyle \int \sec ^{3}{x}\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5caad7043f7aa20013456e428c64b7fba0df359f)
![{\displaystyle \int \sec ^{n}{ax}\,dx={\frac {\sec ^{n-2}{ax}\tan {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \sec ^{n-2}{ax}\,dx\qquad {\mbox{ (สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c7c7793924eadd44ba3a8c23684cb5ad910b54)
![{\displaystyle \int {\frac {dx}{\sec {x}+1}}=x-\tan {\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9acabbd90de19b0d361d572dce3398a57c9d653f)
![{\displaystyle \int {\frac {dx}{\sec {x}-1}}=-x-\cot {\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2845a0bb3c940ca6f9d98303dd5944618ad6a93c)
![{\displaystyle \int \csc {ax}\,dx=-{\frac {1}{a}}\ln {\left|\csc {ax}+\cot {ax}\right|}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d51921c472f398df353d0db33a9af2ebe5fbf3fb)
![{\displaystyle \int \csc ^{2}{x}\,dx=-\cot {x}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/417803af6cef8535c9b9ee74f75a20ab4180fac0)
![{\displaystyle \int \csc ^{3}{x}\,dx=-{\frac {1}{2}}\csc x\cot x-{\frac {1}{2}}\ln |\csc x+\cot x|+C.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4220c65a3d696e2869d56dae70aa855079f02ee1)
![{\displaystyle \int \csc ^{n}{ax}\,dx=-{\frac {\csc ^{n-2}{ax}\cot {ax}}{a(n-1)}}\,+\,{\frac {n-2}{n-1}}\int \csc ^{n-2}{ax}\,dx\qquad {\mbox{ (สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/359367267d3e25afa0c8cd6af60d5780dedaaf80)
![{\displaystyle \int {\frac {dx}{\csc {x}+1}}=x-{\frac {2}{\cot {\frac {x}{2}}+1}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d3116bd8d583f72077e90f06cf8e867997fdd14)
![{\displaystyle \int {\frac {dx}{\csc {x}-1}}=-x+{\frac {2}{\cot {\frac {x}{2}}-1}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f12f1dc04dd4f01c7df46f36cba6653112da4418)
![{\displaystyle \int \cot ax\,dx={\frac {1}{a}}\ln |\sin ax|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fd8d33638f05fb0f16334bb90a8aa016dc05bca)
![{\displaystyle \int \cot ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\cot ^{n-1}ax-\int \cot ^{n-2}ax\,dx\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ffb96425ac860fce009da216bcff9b9d263135b)
![{\displaystyle \int {\frac {dx}{1+\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax+1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71447e63d1e814178460d1416d9d29f31e8c2d0b)
![{\displaystyle \int {\frac {dx}{1-\cot ax}}=\int {\frac {\tan ax\,dx}{\tan ax-1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/917ad9a99416b13a144f8afdf409b4243f97a5f9)
![{\displaystyle \int {\frac {dx}{\cos ax\pm \sin ax}}={\frac {1}{a{\sqrt {2}}}}\ln \left|\tan \left({\frac {ax}{2}}\pm {\frac {\pi }{8}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f99f9f4158d86f68a6f22ac0b494b8df2a009d24)
![{\displaystyle \int {\frac {dx}{(\cos ax\pm \sin ax)^{2}}}={\frac {1}{2a}}\tan \left(ax\mp {\frac {\pi }{4}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25e0e3cebd7eac046797eefb5e8be824a6ec6008)
![{\displaystyle \int {\frac {dx}{(\cos x+\sin x)^{n}}}={\frac {1}{n-1}}\left({\frac {\sin x-\cos x}{(\cos x+\sin x)^{n-1}}}-2(n-2)\int {\frac {dx}{(\cos x+\sin x)^{n-2}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae4a31631ace2155c341f3a42e944454f4d2525b)
![{\displaystyle \int {\frac {\cos ax\,dx}{\cos ax+\sin ax}}={\frac {x}{2}}+{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/064e4fca8dab302c4a14d713ffec2d193c49e5aa)
![{\displaystyle \int {\frac {\cos ax\,dx}{\cos ax-\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31c1c965e0a049e416b48908b9083d822fcd820d)
![{\displaystyle \int {\frac {\sin ax\,dx}{\cos ax+\sin ax}}={\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax+\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f7081fc3083a1df9044e044c70fb6749e39772f)
![{\displaystyle \int {\frac {\sin ax\,dx}{\cos ax-\sin ax}}=-{\frac {x}{2}}-{\frac {1}{2a}}\ln \left|\sin ax-\cos ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/885121414a63e1158cce975732a0140443059683)
![{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1+\cos ax)}}=-{\frac {1}{4a}}\tan ^{2}{\frac {ax}{2}}+{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4be1a480baee112532376953a0e514953aac55e5)
![{\displaystyle \int {\frac {\cos ax\,dx}{(\sin ax)(1-\cos ax)}}=-{\frac {1}{4a}}\cot ^{2}{\frac {ax}{2}}-{\frac {1}{2a}}\ln \left|\tan {\frac {ax}{2}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5551ba6b1a17809cd93bad200f96d7bd77c41add)
![{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1+\sin ax)}}={\frac {1}{4a}}\cot ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)+{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cba9a5f34c6745abfcdfea7906197167c4bf7fc4)
![{\displaystyle \int {\frac {\sin ax\,dx}{(\cos ax)(1-\sin ax)}}={\frac {1}{4a}}\tan ^{2}\left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)-{\frac {1}{2a}}\ln \left|\tan \left({\frac {ax}{2}}+{\frac {\pi }{4}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89bd9ffed0a439702f128c452dd2e9d363175ef4)
![{\displaystyle \int (\sin ax)(\cos ax)\,dx={\frac {1}{2a}}\sin ^{2}ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bd704958c5a62ac35486a94c701c4d4d4d89ae1)
![{\displaystyle \int (\sin a_{1}x)(\cos a_{2}x)\,dx=-{\frac {\cos((a_{1}-a_{2})x)}{2(a_{1}-a_{2})}}-{\frac {\cos((a_{1}+a_{2})x)}{2(a_{1}+a_{2})}}+C\qquad {\mbox{(สำหรับ }}|a_{1}|\neq |a_{2}|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/818a448f949bcb547ce7cc2879c73fc06bc0f219)
![{\displaystyle \int (\sin ^{n}ax)(\cos ax)\,dx={\frac {1}{a(n+1)}}\sin ^{n+1}ax+C\qquad {\mbox{(สำหรับ }}n\neq -1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54ed839445b9112df78dddcd7e17bbdec9b39697)
![{\displaystyle \int (\sin ax)(\cos ^{n}ax)\,dx=-{\frac {1}{a(n+1)}}\cos ^{n+1}ax+C\qquad {\mbox{(สำหรับ }}n\neq -1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a91876aaadcd7c4dbbb8564808a6e5f634e769f)
![{\displaystyle {\begin{aligned}\int (\sin ^{n}ax)(\cos ^{m}ax)\,dx&=-{\frac {(\sin ^{n-1}ax)(\cos ^{m+1}ax)}{a(n+m)}}+{\frac {n-1}{n+m}}\int (\sin ^{n-2}ax)(\cos ^{m}ax)\,dx\qquad {\mbox{(สำหรับ }}m,n>0{\mbox{)}}\\&={\frac {(\sin ^{n+1}ax)(\cos ^{m-1}ax)}{a(n+m)}}+{\frac {m-1}{n+m}}\int (\sin ^{n}ax)(\cos ^{m-2}ax)\,dx\qquad {\mbox{(สำหรับ }}m,n>0{\mbox{)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfae4833688b8fce1cf1269034f42802bc3d6efc)
![{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ax)}}={\frac {1}{a}}\ln \left|\tan ax\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e03f904edd8835bf1f3b47bce34e30cf3e2fbf32)
![{\displaystyle \int {\frac {dx}{(\sin ax)(\cos ^{n}ax)}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+\int {\frac {dx}{(\sin ax)(\cos ^{n-2}ax)}}\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a79229a6f5ab9514979dd04282e439c025e24724)
![{\displaystyle \int {\frac {dx}{(\sin ^{n}ax)(\cos ax)}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+\int {\frac {dx}{(\sin ^{n-2}ax)(\cos ax)}}\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d64baa74a9186c680251574670df00585e6c9172)
![{\displaystyle \int {\frac {\sin ax\,dx}{\cos ^{n}ax}}={\frac {1}{a(n-1)\cos ^{n-1}ax}}+C\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a4bf0275848ceb4ea1394b88d4324c4459f08c33)
![{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ax}}=-{\frac {1}{a}}\sin ax+{\frac {1}{a}}\ln \left|\tan \left({\frac {\pi }{4}}+{\frac {ax}{2}}\right)\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0901ab7048597a2d942a8d9ec9251ab116891ac8)
![{\displaystyle \int {\frac {\sin ^{2}ax\,dx}{\cos ^{n}ax}}={\frac {\sin ax}{a(n-1)\cos ^{n-1}ax}}-{\frac {1}{n-1}}\int {\frac {dx}{\cos ^{n-2}ax}}\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0cbda38b83baa56ccdf64f324b2f41e6daa4da7e)
![{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ax}}=-{\frac {\sin ^{n-1}ax}{a(n-1)}}+\int {\frac {\sin ^{n-2}ax\,dx}{\cos ax}}\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7be2dc32af961614d2ae6132d92bfd9ea2f6632)
![{\displaystyle \int {\frac {\sin ^{n}ax\,dx}{\cos ^{m}ax}}={\begin{cases}{\frac {\sin ^{n+1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\sin ^{n}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(สำหรับ }}m\neq 1{\mbox{)}}\\{\frac {\sin ^{n-1}ax}{a(m-1)\cos ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\sin ^{n-2}ax\,dx}{\cos ^{m-2}ax}}&{\mbox{(สำหรับ }}m\neq 1{\mbox{)}}\\-{\frac {\sin ^{n-1}ax}{a(n-m)\cos ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\sin ^{n-2}ax\,dx}{\cos ^{m}ax}}&{\mbox{(สำหรับ }}m\neq n{\mbox{)}}\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ff57181fbec3421a7f127d0f4cd22dccdcd5805c)
![{\displaystyle \int {\frac {\cos ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{a(n-1)\sin ^{n-1}ax}}+C\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2bac5bedcefc7f86d36894027c65d9d59faa7211)
![{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ax}}={\frac {1}{a}}\left(\cos ax+\ln \left|\tan {\frac {ax}{2}}\right|\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af8d5900b25ed3cda6de1b98479c1fc0d1c30cd9)
![{\displaystyle \int {\frac {\cos ^{2}ax\,dx}{\sin ^{n}ax}}=-{\frac {1}{n-1}}\left({\frac {\cos ax}{a\sin ^{n-1}ax}}+\int {\frac {dx}{\sin ^{n-2}ax}}\right)\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bbeb23a446075e2c58f460447659a1ac7f50aba3)
![{\displaystyle \int {\frac {\cos ^{n}ax\,dx}{\sin ^{m}ax}}={\begin{cases}-{\frac {\cos ^{n+1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-m+2}{m-1}}\int {\frac {\cos ^{n}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(สำหรับ }}m\neq 1{\mbox{)}}\\-{\frac {\cos ^{n-1}ax}{a(m-1)\sin ^{m-1}ax}}-{\frac {n-1}{m-1}}\int {\frac {\cos ^{n-2}ax\,dx}{\sin ^{m-2}ax}}&{\mbox{(สำหรับ }}m\neq 1{\mbox{)}}\\{\frac {\cos ^{n-1}ax}{a(n-m)\sin ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cos ^{n-2}ax\,dx}{\sin ^{m}ax}}&{\mbox{(สำหรับ }}m\neq n{\mbox{)}}\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8abac1fe613591f2db10dbf782bee2bc73d71c81)
![{\displaystyle \int (\sin ax)(\tan ax)\,dx={\frac {1}{a}}(\ln |\sec ax+\tan ax|-\sin ax)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d503c75c8dcbb712f88809162a2e3e20f1ff7b88)
![{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\sin ^{2}ax}}={\frac {1}{a(n-1)}}\tan ^{n-1}(ax)+C\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6244ad62c588cc0a5e4c6aeffd570b6b6414d9f7)
![{\displaystyle \int {\frac {\tan ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(n+1)}}\tan ^{n+1}ax+C\qquad {\mbox{(สำหรับ }}n\neq -1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ead6b2f5c8398c8d1f400eab8fc378092c96b1dd)
![{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\sin ^{2}ax}}=-{\frac {1}{a(n+1)}}\cot ^{n+1}ax+C\qquad {\mbox{(สำหรับ }}n\neq -1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c550425ee7cfb7771219e219e4d697578b8b1442)
![{\displaystyle \int {\frac {\cot ^{n}ax\,dx}{\cos ^{2}ax}}={\frac {1}{a(1-n)}}\tan ^{1-n}ax+C\qquad {\mbox{(สำหรับ }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ad916729709d94eca48f50d5016e99482f3af70)
![{\displaystyle \int (\sec x)(\tan x)\,dx=\sec x+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d3426300c895f6ff40c28455d36d29417d683dee)
![{\displaystyle \int (\csc x)(\cot x)\,dx=-\csc x+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/abd49ac7e4242cab5000f8180c53adcd584240f4)
|