Экспериментальная математикаЭкспериментальная математика — область математики, отличающаяся использованием различных приёмов, в том числе приёмов подстановки, перемещения, доказательств от обратного, в том числе с использованием электронно-вычислительных инструментов для проверки, подтверждения старых и получения новых фактов (теорем) в математике. Все результаты, полученные в экспериментальной математике, являются строго доказанными утверждениями математики. Строго говоря, любые доказательства, выкладки, вычисления и т. д. являются экспериментами с целью получения новых законов (теорем). Однако в экспериментальной математике для проведения экспериментов используется современная вычислительная техника, позволяющая осуществлять эксперименты, недоступные при ручном счете. Основным методом экспериментальной математики являются доказательные вычисления, в ходе которых результаты вычислений используются для строгого доказательства математических фактов. Пол Ричард Халмош писал: «Математика не является дедуктивной наукой — это клише. Если вы пытаетесь доказать теорему, вам недостаточно перечислить посылки, а затем начать рассуждения. Что вы делаете, это пробы и ошибки, эксперименты и угадывания. Вам нужно обнаружить, что это за факт, и то, что вы делаете, похоже на работу экспериментатора в лаборатории»[1]. ИсторияМатематики всегда практиковали экспериментальную математику. Существуют записи ранних математиков, таких как вавилонские, обычно состоящие из списка числовых примеров, иллюстрирующих алгебраическое тождество. Однако современные математики, начиная с 17-го столетия, развили традицию печати результатов в конечном, формальном представлении. Числовые примеры, которые могли привести математику к формулировке теоремы, не публиковались, и, как правило, забыты. Экспериментальная математика как отдельная область изучения возродилась в двадцатом столетии, когда изобретение электронных компьютеров в значительной степени увеличило область выполнимых вычислений со скоростью и точностью, которая была недоступна предыдущим поколениям математиков. Существенной вехой и достижением экспериментальной математики было открытие в 1995-м году формулы Бэйли — Боруэйна — Плаффа для двоичных цифр числа π. Формула была открыта не по формальным причинам, а после поиска с помощью компьютера. Только после этого было найдено строгое доказательство[2]. Цели и использованиеЦелью экспериментальной математики является «получить понимание и проникновения в сущность понятий, подтвердить или опровергнуть гипотезы, сделать математику более осязаемой, яркой и интересной как для профессиональных математиков, так и любителей»[3]. Использование экспериментальной математики[4]:
Аппарат и техникиЭкспериментальная математика использует вычислительные методы для вычисления приближённых значений интегралов и сумм бесконечных рядов. Для вычислений часто используется арифметика произвольной точности — обычно 100 значащих цифр и более. Затем используется алгоритм целочисленных отношений[англ.] для поиска связей между этими значениями и математическими константами. Работа с высокой точностью уменьшает возможность принятия математического совпадения за истинную связь. Затем ищется формальное доказательство предполагаемой связи — часто проще найти доказательство, если гипотетическая связь известна. Если ищется контрпример или нужно произвести доказательство, требующее перебора большого объёма, может быть использована техника распределённых вычислений для распределения вычисления между компьютерами. Часто используются общие системы компьютерной алгебры, такие как Mathematica, хотя пишутся и специфичные для конкретной области программы, чтобы атаковать проблемы, для решения которых нужна высокая эффективность. Программное обеспечение экспериментальной математики обычно включает механизмы обнаружения и исправления ошибок, проверку целостности и избыточные вычисления для минимизации возможности получения ошибочного результата при программных ошибках или сбоях процессора. Приложения и примеры
Правдоподобные, но неверные примерыНекоторые правдоподобные связи выполняются до высокой степени точности, но остаются неверными. Один такой пример: Обе стороны данного выражения отличаются лишь в 42-м знаке[8]. Другой пример — максимальная высота (максимальное абсолютное значение коэффициентов) всех множителей xn − 1 оказывается той же самой, что и высота кругового многочлена n-й степени. Компьютерные вычисления показали, что это верно для n < 10000 и ожидали, что это верно для всех n. Однако более полный поиск показал, что равенство оказывается неверным для n = 14235, когда высота кругового многочлена n-й степени равна 2, а максимальная высота множителей xn − 1 равна 3[9]. ИсследователиСледующие математики и специалисты в области информатики[англ.] внесли существенный вклад в области экспериментальной математики: См. также
Примечания
Литература
Ссылки
|