Числа СерпинскогоВ теории чисел нечётное натуральное число k является числом Серпинского, если для любого натурального числа n число является составным. Числа Серпинского названы так в честь открывшего их существование польского математика Вацлава Серпинского. Существование чисел Серпинского довольно неочевидно. Например, если рассмотреть последовательность , то в ней регулярно будут встречаться простые числа, и неожиданным является тот факт, что для некоторых k в последовательности никогда не встретится простое число. Чтобы доказать, что число k не является числом Серпинского, нужно найти такое n, что число является простым. Известные числа СерпинскогоПоследовательность известных на данный момент чисел Серпинского начинается так[1]:
То, что число 78 557 является числом Серпинского, было доказано в 1962 году Джоном Селфриджом[англ.], который показал, что каждое число вида делится по крайней мере на одно число из покрывающего множества {3, 5, 7, 13, 19, 37, 73}. Аналогично доказывается, что 271 129 также является числом Серпинского: каждое число вида делится по крайней мере на одно число из множества {3, 5, 7, 13, 17, 241}. Большинство известных на данный момент чисел Серпинского обладают подобными покрывающими множествами[2]. Проблема СерпинскогоЗадача отыскания минимального числа Серпинского известна как проблема Серпинского. В 1967 году Селфридж и Серпинский предположили, что 78 557 является наименьшим числом Серпинского. Доказательством этой гипотезы занимаются проекты распределённых вычислений Seventeen or Bust и PrimeGrid. К концу 2016 года из шести чисел-кандидатов, которые могли бы опровергнуть эту гипотезу, осталось пять: 21 181, 22 699, 24 737, 55 459 и 67 607[3] (число 10223 было отвергнуто в ноябре 2016 года[4]). См. такжеПримечания
Ссылки
|