Шестнадцатеричная система счисленияШестнадцатери́чная систе́ма счисле́ния — позиционная система счисления по основанию 16. В качестве цифр этой системы счисления обычно используются цифры от 0 до 9 и латинские буквы от A до F. Буквы A, B, C, D, E, F имеют значения 1010, 1110, 1210, 1310, 1410, 1510 соответственно. Пример шестнадцатеричного числа: 1A45F0D (1A45F0D16 = 27 549 45310). ПрименениеШироко используется в низкоуровневом программировании и компьютерной документации, поскольку в современных компьютерах минимальной адресуемой единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами, а значение половины байта — полубайта — одной цифрой. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, PDP-11 или БЭСМ-6) использовали восьмеричную систему. В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями). Шестнадцатеричный цвет — запись трёх компонентов цвета (R, G и B) в шестнадцатеричном виде. Например, цвет, имеющий шестнадцатеричный номер 00FF00, — ярко-зелёный (__). Способы записиВ математикеВ математике основание системы счисления принято указывать в десятичной системе в нижнем индексе. Например, десятичное число 1443 можно записать как 144310 или как 5A316. В языках программированияВ разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:
Перевод чисел из одной системы счисления в другуюПеревод чисел из шестнадцатеричной системы в десятичнуюДля перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа. Например, требуется перевести шестнадцатеричное число 3A5 в десятичное. В этом числе 3 шестнадцатеричные цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16: = 3·256+10·16+5·1 = 768+160+5 = 93310 При переводе чисел следует помнить, что в шестнадцатеричной системе счисления: A=10; B=11; C=12; D=13; E=14; F=15. Перевод чисел из двоичной системы в шестнадцатеричную и наоборотДля перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную нужно заменить каждую его цифру на соответствующую тетраду из нижеприведённой таблицы перевода. Например:
Таблица перевода чисел
См. такжеПримечания
Ссылки |