Система счисленияСисте́ма счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков. Система счисления:
Системы счисления подразделяются на:
Позиционные системы счисленияВ позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у арабов. Под позиционной системой счисления обычно понимается однородная -ичная система счисления, которая определяется целым числом , называемым «основанием» системы счисления. Целое число без знака в такой -ичной системе счисления представляется в виде конечной линейной комбинации степеней числа :
Каждая степень в такой записи называется «весовым коэффициентом разряда». Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно в записи ненулевых чисел начальные нули опускаются. Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ичных цифр, перечисляемых по убыванию старшинства разрядов слева направо: Например, число сто три представляется в десятичной системе счисления в виде: Наиболее часто употребляемыми в настоящее время однородными позиционными системами являются:
В позиционных системах чем больше основание системы счисления, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа. Смешанные системы счисленияСмешанная система счисления является обобщением -ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация:
Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого. В зависимости от вида как функции от смешанные системы счисления могут быть степенными, показательными. Когда для некоторого , смешанная система счисления совпадает с показательной -ичной системой счисления. Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд. Факториальная система счисленияВ факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:
Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: номер перестановки (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе будет обозначать число инверсий для элемента в том множестве, в котором производятся перестановки (число элементов меньших , но стоящих правее его в искомой перестановке). Пример: рассмотрим множество перестановок из пяти элементов, всего их — 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём перестановку с номером 100: положим — коэффициент при числе , тогда , , , , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, перестановка с номером 100 будет иметь вид: (5,3,1,2,4). Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки. Фибоначчиева система счисленияФибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число в ней представляется в виде:
Непозиционные системы счисленияВ непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания. К наиболее распространённым сегодня непозиционным системам счисления относятся римские цифры. Биномиальная система счисленияВ биномиальной системе счисления[англ.] число x представляется в виде суммы биномиальных коэффициентов:
При всяком фиксированном значении каждое натуральное число представляется уникальным образом[4]. Система остаточных классов (СОК)Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка . В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в . Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям . Система счисления Штерна-БрокоСистема счисления Штерна-Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна-Броко. См. также
Примечания
Ссылки
|