Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой в евклидовой геометрии. Расстояние равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой. Формула вычисления расстояния может быть получена и выражена несколькими способами.
Знание наименьшего расстояния от точки до прямой может быть полезно во многих случаях, например, для поиска кратчайшего пути для выхода на дорогу, определение разброса графа, и подобное. В регрессии Деминга, процедуре линейного сглаживания, если зависимые и независимые переменные имеют одну и ту же дисперсию, регрессия сводится к ортогональной регрессии, в которой степень приближения измеряется для каждой точки как расстояние от точки до регрессионной прямой.
Когда прямая на плоскости задана уравнением ax + by + c = 0, где a, b и c — такие вещественные константы, что a и b не равны нулю одновременно, и расстояние от прямой до точки (x0,y0) равно [1]
Точка на прямой, наиболее близкая к (x0,y0), имеет координаты [2]
и
Горизонтальные и вертикальные прямые
В общем уравнении прямой ax + by + c = 0 коэффициенты a и b не могут быть одновременно равны нулю пока c ненулевое, а в случае всех нулевых коэффициентов уравнение не задаёт прямую. Если a = 0, а b≠ 0, прямая горизонтальна и имеет уравнение y = -c/b. Расстояние от (x0, y0) до этой прямой определяется вертикальным отрезком длины |y0 — (-c/b)| = |by0 + c| / |b| (согласно формуле). Аналогичным образом, для вертикальных прямых (b = 0) расстояние между той же точкой и прямой равно |ax0 + c| / |a| и измеряется вдоль горизонтального отрезка.
Нормированное уравнение прямой
Нормированное уравнение прямой — это уравнение вида
Нормированное уравнение получается из общего уравнения прямой ax + by + c = 0 делением всех членов на .
Тогда расстояние от точки (x0, y0) до прямой равно абсолютному значению отклонения и вычисляется по формуле [3][4]
Прямая задана двумя точками
Если прямая проходит через две точки P1=(x1,y1) и P2=(x2,y2), и необходимо найти расстояние от до прямой, то можно воспользоваться следующими способами:
Способ 1. Искомое расстояние равно
Знаменатель этого выражения равен расстоянию между точками P1 и P2. Числитель равен удвоенной площади треугольника с вершинами (x0,y0), P1 и P2 (см. Общая формула площади треугольника в декартовых координатах). Выражение эквивалентно , что может быть получено преобразованием стандартной формулы площади треугольника: , где b — длина стороны, а h — высота на эту сторону из противолежащей вершины.
Способ 2. Сначала находится ближайшая точка на прямой к точке по формуле
.
Тогда искомое расстояние равно
.
Доказательства
Алгебраическое доказательство
Это доказательство верно, только когда прямая не является ни вертикальной, ни горизонтальной. То есть мы предполагаем, что ни a, ни b в уравнении не равны нулю.
Прямая с уравнением ax + by + c = 0 имеет наклон -a/b, так что любая прямая, перпендикулярная к заданной, имеет наклон b/a. Пусть (m, n) — точка пересечения прямой ax + by + c = 0 и перпендикулярной прямой, проходящей через точку (x0, y0). Прямая, проходящая через эти две точки, перпендикулярна исходной прямой, так что
Таким образом,
и после возведения в квадрат получим:
Рассмотрим,
Здесь использовано возведённое в квадрат выражение. Но
,
так как точка (m, n) расположена на прямой ax + by + c = 0.
Таким образом,
Из этого получаем длину отрезка между этими двумя точками:
Это доказательство верно, только когда прямая не является ни вертикальной, ни горизонтальной. Баллантин и Джерберт[6] не упомянули это ограничение в своей статье.
Опустим перпендикуляр из точки P с координатами (x0, y0) на прямую с уравнением Ax + By + C = 0. Обозначим основание перпендикуляра буквой R. Проведём вертикальную прямую через P и обозначим пересечение этой вертикальной прямой с исходной прямой буквой S. В произвольной точке T на прямой нарисуем прямоугольный треугольник TVU, катеты которого являются горизонтальными и вертикальными отрезками, а длина горизонтального отрезка равна |B| (см. рисунок). Вертикальный катет треугольника ∆TVU будет иметь длину |A|, поскольку наклон прямой равен -A/B.
Треугольники ∆SRP и ∆UVT подобны, так как они оба прямоугольные и ∠PSR ≅ ∠VUT, поскольку являются соответственными углами двух параллельных прямых PS и UV (вертикальные прямые) и секущей (исходная прямая)[7]. Выпишем отношения сторон этих треугольников:
Если точка S имеет координаты (x0,m), то |PS| = |y0 — m| и расстояние от P до прямой равно:
Поскольку S находится на прямой, мы можем найти значение m,
Другой вариант этого доказательства — поместить точку V в точку P и вычислить площадь треугольника ∆UVT двумя способами, после чего получим ,
где D — высота треугольника ∆UVT на гипотенузу из точки P. Формула расстояния может быть использована, чтобы выразить , и в терминах координат P и коэффициентов уравнения исходной прямой, в результате чего получим требуемую формулу.
Доказательство с помощью проекции вектора
Пусть P — точка с координатами (x0, y0) и пусть исходная прямая имеет уравнение ax + by + c = 0. Пусть Q = (x1, y1) — любая точка на прямой и n — вектор (a, b) с началом в точке Q. Вектор n перпендикулярен прямой, и расстояние d от точки P до прямой равно длине ортогональной проекции на n. Длина этой проекции равна:
Можно получить другие выражения для кратчайшего расстояния от точки до прямой. Эти выводы тоже требуют, чтобы прямая не была вертикальной или горизонтальной.
Пусть точка P задана координатами ().
Пусть прямая задана уравнением . Уравнение прямой, перпендикулярной исходной прямой и проходящей через точку P, задаётся уравнением .
Точка, в которой эти две прямые пересекаются, является ближайшей точкой на исходной прямой для точки P. Тогда:
Мы можем решить это уравнение по x,
Координату y точки пересечения можно найти, подставив значение x в уравнение исходной прямой,
Подставив полученные значения в формулу расстояния , получим формулу кратчайшего расстояния от точки до прямой:
Если заметить, что m = -a/b и k = -c/b для уравнения ax + by + c = 0, после небольших выкладок получим стандартное выражение[2].
где x — вектор, задающий координаты любой точки на прямой, n — единичный вектор в направлении прямой, a — вектор, задающий две координаты точки на прямой, а t — скаляр. То есть для получения точки x на прямой начинаем с точки a на прямой и двигаемся на расстояние t вдоль прямой.
Расстояние от произвольной точки p до прямой задаётся формулой
Эта формула геометрически строится следующим образом: — это вектор из p в точку a на прямой. Тогда — это длина проекции на прямую, а тогда
— это вектор, являющийся проекцией на прямую. Тогда
является компонентой вектора , перпендикулярной прямой. Следовательно, расстояние от точки до прямой равно норме этого вектора[11]. Эта формула может быть использована и в более высоких размерностях.
Другая формулировка с помощью векторов
Если векторное пространство ортонормально, а прямая (d ) проходит через точку B и имеет вектор направления[англ.], то расстояние от точки A до прямой (d) равно
Рассмотрим прямую с уравнением
где , то есть прямая не проходит через начало координат , и произвольную точку . Тогда расстояние от точки до прямой равно следующему выражению[12]:
Laudański L. M. . Between Certainty and Uncertainty: Statistics and Probability in Five Units with Notes on Historical Origins and Illustrative Numerical Examples. — Berlin; Heidelberg: Springer Verlag, 2014. — x + 318 p. — (Intelligent Systems Reference Library, vol. 31). — ISBN 978-3-642-25696-7.