Кубическая пирамида
Куби́ческая пирами́да — четырёхмерный многогранник (многоячейник): многогранная пирамида[англ.], имеющая основанием куб. ОписаниеОграничена 7 трёхмерными ячейками — 6 квадратными пирамидами и 1 кубом. Кубическая ячейка окружена всеми шестью пирамидальными; каждая пирамидальная ячейка окружена кубической и четырьмя пирамидальными. У кубической пирамиды 18 граней — 6 квадратов и 12 треугольников. Каждая квадратная грань разделяет кубическую и пирамидальную ячейки, каждая треугольная — две пирамидальных. Имеет 20 рёбер. На каждом ребре сходятся по три грани и по три ячейки: для 12 рёбер это две квадратных и треугольная грани, кубическая и две пирамидальных ячейки; для остальных 8 рёбер — три треугольных грани, три пирамидальных ячейки. Имеет 9 вершин. В 8 вершинах сходятся по 4 ребра, по 6 граней (три квадратных, три треугольных) и по 4 ячейки (кубическая, три пирамидальных); в 1 вершине — 8 рёбер, все 12 треугольных граней и все 6 пирамидальных ячеек. Правильногранная кубическая пирамидаЕсли все рёбра кубической пирамиды имеют равную длину , все её грани являются правильными многоугольниками. Четырёхмерный гиперобъём и трёхмерная гиперплощадь поверхности такой пирамиды выражаются соответственно как Высота пирамиды при этом будет равна радиус описанной гиперсферы (проходящей через все вершины многоячейника) — радиус большей полувписанной гиперсферы (касающейся всех рёбер в их серединах) — радиус меньшей полувписанной гиперсферы (касающейся всех граней) — радиус вписанной гиперсферы (касающейся всех ячеек) — Центр вписанной гиперсферы располагается внутри пирамиды; центры описанной и большей полувписанной гиперсфер — в одной и той же точке вне пирамиды, симметричной вершине пирамиды относительно её основания; центр меньшей полувписанной гиперсферы — в другой точке вне пирамиды. Такую пирамиду можно получить, взяв выпуклую оболочку любой вершины двадцатичетырёхъячейника и всех 8 соседних вершин, соединённых с ней ребром. Угол между двумя смежными пирамидальными ячейками будет равен как и между смежными октаэдрическими ячейками в двадцатичетырёхъячейнике. Угол между кубической ячейкой и любой пирамидальной будет равен В координатахПравильногранную кубическую пирамиду с длиной ребра можно разместить в декартовой системе координат так, чтобы её вершины имели координаты При этом центры описанной и большей полувписанной гиперсфер будут располагаться в точке центр меньшей полувписанной гиперсферы — в точке центр вписанной гиперсферы — в точке Заполнение пространстваТессеракт можно разрезать на 8 одинаковых правильногранных кубических пирамид (с вершинами в центре тессеракта и основаниями на его восьми кубических ячейках) — подобно тому, как куб разрезается на 6 одинаковых квадратных пирамид (которые, однако, в данном случае правильногранными не будут). А поскольку тессерактами возможно замостить четырёхмерное пространство без промежутков и наложений, правильногранная кубическая пирамида тоже является заполняющим четырёхмерное пространство многоячейником. Доказать это можно и по-другому: разрезав двадцатичетырёхъячейник (также заполняющий четырёхмерное пространство) на 16 одинаковых правильногранных кубических пирамид. Ссылки
|
Portal di Ensiklopedia Dunia