В 1859 году химик Бенджамин Броуди (англ.Benjamin Brodie) впервые испытал действие сильных кислот на графите, получил суспензию кристаллов оксида графена. Доказательства малой толщины этих кристаллов были получены только в 1948 году после эксперимента Дж. Руесса (англ.G. Ruess) и Ф. Фогта (англ.F. Vogt), которые использовали просвечивающий электронный микроскоп. Хотя эти кристаллы были не чистым графеном и их толщина составляла несколько нанометров, в последующих работах Ульриха Хоффмана (англ.Ulrich Hofmann) и Ханса-Питера Бёма (англ.Hanns-Peter Boehm) было показано, что при восстановлении оксида графита попадаются также фрагменты графита атомарной толщины.[1] В 1986 году Бём с коллегами предложил термин графен для обозначения монослойного графита. Первые графеновые слои, выращенные на металлических подложках Ru, Rb, Ni, были получены в 1970 году Джоном Грантом (англ.John Grant) и Блэкли (англ.Blakely)[2][3].
Транспортные измерения на плёнках с десятками слоёв провёл в 1997—2000 годах Ёсико Охаси (англ.Yoshiko Ohashi), он продемонстрировал эффект электрического поля на сопротивление плёнок и измерил осцилляции Шубникова — де Гааза[2]. Впервые транспортные свойства графена с 2004 года[4] изучались в Манчестерском университете под руководством Андрея Гейма. В статье Константина Новосёлова в журнале «Science» от 2004 года были показаны основные электрические транспортные и магнетотранспортные свойства графитовых плёнок толщиной в несколько атомарных слоёв, продемонстрированы эффект поля и полевой транзистор на основе Si/SiO2, ставший основной структурой для последующих транспортных исследований. Позже в 2005 году та же группа измерила квантовый эффект Холла[5], доказали линейность энергетического спектра графена и применимость уравнения Дирака к носителям тока в графене[6]. Последнее примечательно тем, что открыло возможность изучать аналогичные эффекты квантовой электродинамики в лаборатории на столе[7].
Простой метод получения образцов графена, предложенный в работе 2004 года[4], позволил сотням лабораторий по всему миру включиться в исследования уникальных свойств графена[8][9]. Работа 2004 года с тех пор была процитирована более 10 000 раз согласно Google Scholar[10]. Эта статья вошла в список сотни статей с наибольшим числом цитирований[11]. За исследования свойств графена Андрей Гейм и Константин Новосёлов получили Нобелевскую премию по физике за 2010 год[12].
Примечания
↑Хотя метод, основанный на относительном ПЭМ-контрасте, и не даёт атомарного разрешения
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene (англ.) // Nature : journal. — 2005. — Vol. 438, no. 7065. — P. 197—200. — doi:10.1038/nature04233. — Bibcode: 2005Natur.438..197N. — arXiv:cond-mat/0509330. — PMID16281030.