Геометрическая реализация — фигура, вершинам которой соответствуют вершины графа, рёбрам — рёбра графа и рёбра в фигуре соединяют вершины, соответствующие вершинам в графе.
Геометрический граф — плоская фигура из вершин — точек плоскости и рёбер — линий, соединяющих некоторые пары вершин. Может представлять многими способами всякий граф.
Гиперграф — совокупность из множества вершин и множества гиперрёбер (подмножество n-й евклидовой степени множества вершин, то есть гиперрёбра соединяют произвольное количество вершин).
Гомеоморфные графы — графы, получаемые из одного графа с помощью последовательности подразбиений рёбер.
Грань — область, ограниченная рёбрами в плоском графе и не содержащая внутри себя вершин и рёбер графа. Внешняя часть плоскости тоже образует грань.
Граф родаg — граф, который можно изобразить без пересечений на поверхности родаg и нельзя изобразить без пересечений ни на одной поверхности рода g-1. В частности, планарные графы имеют род 0.
Д
Двойственный граф. Граф А называется двойственным к планарному графу В, если вершины графа А соответствуют граням графа В, и две вершины графа A соединены ребром тогда и только тогда, когда соответствующие грани графа B имеют хотя бы одно общее ребро.
Двудольный граф (или биграф, или чётный граф) — такой граф , что множество вершин V разбито на два непересекающихся подмножества и , причём всякое ребро E инцидентно вершине из и вершине из (то есть соединяет вершину из с вершиной из ). То есть правильная раскраска графа осуществляется двумя цветами. Множества и называются «долями» двудольного графа. Двудольный граф называется «полным», если любые две вершины из и являются смежными. Если , , то полный двудольный граф обозначается .
Диаметр графа — максимум расстояния между вершинами для всех пар вершин. Расстояние между вершинами — наименьшее число рёбер пути, соединяющего две вершины.
Длинамаршрута — количество рёбер в маршруте (с повторениями). Если маршрут , то длина M равна k (обозначается ).
Длинапути — число дуг пути (или сумма длин его дуг, если последние заданы). Так для пути v1, v2, …, vn длина равна n-1.
Дополнение графа — граф над тем же множеством вершин, что и исходный, но вершины соединены ребром тогда и только тогда, когда в исходном графе ребра нет.
Е
Ежевика неориентированного графа G — семейство связных подграфов графа G, касающихся друг друга.
Изолированная вершина — вершина, степень которой равна 0 (то есть нет рёбер, инцидентных ей).
Изоморфизм. Два графа называются изоморфными, если существует перестановка вершин, при которой они совпадают. Иначе говоря, два графа называются изоморфными, если существует взаимно-однозначное соответствие между их вершинами и рёбрами, которое сохраняет смежность и инцидентность (графы отличаются только названиями своих вершин).
Инвариант графа — числовая характеристика графа или их упорядоченный вектор, характеризующая структуру графа инвариантно относительно перенумерации вершин.
Интервальный граф — граф, вершины которого могут быть взаимно однозначно поставлены в соответствие отрезкам на действительной оси таким образом, что две вершины инцидентны одному ребру тогда и только тогда, когда отрезки, соответствующие этим вершинам, пересекаются.
Инцидентность — понятие, используемое только в отношении ребра или дуги и вершины: если — вершины, а — соединяющее их ребро, тогда вершина и ребро инцидентны, вершина и ребро тоже инцидентны. Две вершины (или два ребра) инцидентными быть не могут. Для обозначения ближайших вершин (рёбер) используется понятие смежности.
Конечный граф — граф, содержащий конечное число вершин и рёбер.
Конструктивное перечисление графов — получение полного списка графов в заданном классе.
Компонента связности графа — такое подмножествовершинграфа, для любых двух вершин которого существует путь из одной в другую, и не существует пути из вершины этого подмножества в вершину не из этого подмножества.
k-связный граф — связный граф, в котором не существует набора из или менее вершин, такого, что удаление всех вершин и инцидентных им рёбер нарушает связность графа. В частности, связный граф является 1-связным, а двусвязный — 2-связным.
Л
Лама́нов граф с n вершинами — такой граф G, что, во-первых, для каждого k любой подграф графа G, содержащий k вершин, имеет не более, чем 2k −3 ребра и, во-вторых, граф G имеет ровно 2n −3 ребра.
Локальная степень вершины — число рёбер, ей инцидентных. Петля даёт вклад, равный «2», в степень вершины.
М
Макси-код — трудновычислимый полный инвариант графа, получаемый путём выписывания двоичных значений матрицы смежности в строчку с последующим переводом полученного двоичного числа в десятичную форму. Макси-коду соответствует такой порядок следования строк и столбцов, при котором полученное значение является максимально возможным.
Максимальное паросочетание в графе. Паросочетание называется максимальным, если любое другое паросочетание содержит меньшее число рёбер.
Маршрут в графе — чередующаяся последовательность вершин и рёбер , в которой любые два соседних элемента инцидентны. Если , то маршрут замкнут, иначе открыт.
Матрица достижимости орграфа — матрица, содержащая информацию о существовании путей между вершинами в орграфе.
Матрица инцидентности графа — матрица, значения элементов которой характеризуется инцидентностью соответствующих вершин графа (по вертикали) и его рёбер (по горизонтали). Для неориентированного графа элемент принимает значение 1, если соответствующие ему вершина и ребро инцидентны. Для ориентированного графа элемент принимает значение 1, если инцидентная вершина является началом ребра, значение -1, если инцидентная вершина является концом ребра; в остальных случаях (в том числе и для петель) значению элемента присваивается 0.
Матрица смежности графа — матрица, значения элементов которой характеризуются смежностью вершин графа. При этом значению элемента матрицы присваивается количество рёбер, которые соединяют соответствующие вершины (то есть которые инцидентны обеим вершинам).
Мини-код — трудновычислимый полный инвариант графа, получаемый путём выписывания двоичных значений матрицы смежности в строчку с последующим переводом полученного двоичного числа в десятичную форму. Мини-коду соответствует такой порядок следования строк и столбцов, при котором полученное значение является минимально возможным.
Минимальный каркас (или каркас минимального веса, минимальное остовное дерево) графа — ациклическое (не имеющее циклов) множество рёбер в связном, взвешенном и неориентированном графе, соединяющих между собой все вершины данного графа, при этом сумма весов всех рёбер в нём минимальна.
Множество смежности вершины v — множество вершин, смежных с вершиной v. Обозначается .
Минором графа называется граф, который можно получить из исходного путём удаления и стягивания дуг.
Мультиграф — граф, в котором может быть пара вершин, которая соединена более чем одним ребром (ненаправленным), либо более чем двумя дугами противоположных направлений.
Н
Направленный граф — ориентированный граф, в котором две вершины соединяются не более чем одной дугой.
Независимое множество вершин (известное также как внутренне устойчивое множество) — множество вершин графа G, в котором любые две вершины несмежны (никакая пара вершин не соединена ребром).
Независимое множество называется максимальным, когда нет другого независимого множества, в которое оно бы входило. Дополнение наибольшего независимого множества называется минимальным вершинным покрытием графа.
Наибольшим независимым множеством называется независимое множество наибольшего размера.
Объединение графов (помеченных графов и ) — граф , множеством вершин которого является , а множеством рёбер — .
Окрестность порядкаk — множество вершин на расстоянии k от заданной вершины v; иногда толкуется расширительно как множество вершин, отстоящих от v на расстоянии не больше k.
Окружение — множество вершин, смежных с заданной.
Орграф, ориентированный граф G = (V,E) есть пара множеств, где V — множество вершин (узлов), E — множество дуг (ориентированных рёбер). Дуга — упорядоченная пара вершин (v, w), где вершину v называют началом, а w — концом дуги. Можно сказать, что дуга v → w ведёт от вершины v к вершине w, при этом вершина w смежная с вершиной v.
Планарный граф — граф, который может быть изображён (уложен) на плоскости без пересечения рёбер. Изоморфен плоскому графу, то есть является графом с пересечениями, но допускающий его плоскую укладку, поэтому может отличаться от плоского графа изображением на плоскости. Таким образом, может быть разница между плоским графом и планарным графом при изображении на плоскости.
Плоский граф — геометрический граф, в котором никакие два ребра не имеют общих точек, кроме инцидентной им обоим вершины (не пересекаются). Является уложенным графом на плоскости.
Подграф исходного графа — граф, содержащий некое подмножество вершин данного графа и некое подмножество инцидентных им рёбер. (ср. Суграф.) По отношению к подграфу исходный граф называется суперграфом
Полный граф — граф, в котором для каждой пары вершин , существует ребро, инцидентное и инцидентное (каждая вершина соединена ребром с любой другой вершиной).
Полным двудольным называется двудольный граф, в котором каждая вершина одного подмножества соединена ребром с каждой вершиной другого подмножества
Полустепень захода в орграфе для вершины — число дуг, входящих в вершину. Обозначается , , или .
Полустепень исхода в орграфе для вершины — число дуг, исходящих из вершины. Обозначается , , или .
Помеченный граф — граф, вершинам или дугам которого присвоены какие-либо метки, например, натуральные числа или символы какого-нибудь алфавита.
Порождённый подграф — подграф, порождённый подмножеством вершин и множеством всех рёбер исходного графа, которые соединяют вершины из заданного подмножества. Содержит не обязательно все вершины графа, но эти вершины соединены такими же рёбрами, как в графе.
Правильная раскраска графа — раскраска, при которой каждый цветной класс является независимым множеством. Иначе говоря, в правильной раскраске любые две смежные вершины должны иметь разные цвета.
Произведение графов — для данных графов и произведением называется граф , вершины которого — декартово произведение множеств вершин исходных графов.
Простая цепь — маршрут, в котором все вершины различны.
Путь — последовательность рёбер (в неориентированном графе) и/или дуг (в ориентированном графе), такая, что конец одной дуги (ребра) является началом другой дуги (ребра). Или последовательность вершин и дуг (рёбер), в которой каждый элемент инцидентен предыдущему и последующему[4]. Может рассматриваться как частный случай маршрута.
Путь в орграфе — последовательность вершин v1, v2, …, vn, для которой существуют дуги v1 → v2, v2 → v3, …, vn-1 → vn. Говорят, что этот путь начинается в вершине v1, проходит через вершины v2, v3, …, vn-1, и заканчивается в вершине vn.
Р
Радиус графа — минимальный из эксцентриситетов вершин связного графа; вершина, на которой достигается этот минимум, называется центральной вершиной.
Разбиение графа — представление исходного графа в виде множества подмножеств вершин по определённым правилам.
Развёртка графа — функция, заданная на вершинах ориентированного графа.
Размер графа — количество рёбер графа.
Размеченный граф — граф, для которого задано множество меток S, функция разметки вершин f : A → S и функция разметки дуг g : R → S. Графически эти функции представляются надписыванием меток на вершинах и дугах. Множество меток может разделяться на два непересекающихся подмножества меток вершин и меток дуг.
Рамочный граф — граф, который можно нарисовать на плоскости таким способом, что любая ограниченная грань является четырёхугольником и любая вершина с тремя и менее соседями инцидентна неограниченной грани.[5]
Раскраска графа — разбиение вершин на множества (называемые цветами). Если при этом нет двух смежных вершин, принадлежащих одному и тому же множеству (то есть две смежные вершины всегда разного цвета), то такая раскраска называется правильной.
Расстояние между вершинами — длина кратчайшей цепи (в орграфе пути), соединяющей заданные вершины. Если такой цепи (пути) не существует, расстояние полагается равным бесконечности.
Рёберное покрытие — множество рёбер графа такое, что каждая вершина инцидентна хотя бы одному ребру из этого множества.
Рёберный граф неориентированного графа — это граф, представляющий соседство рёбер графа.
Ребро — базовое понятие. Ребро соединяет две вершины графа.
Регулярный граф — граф, степени всех вершин которого равны. Степень регулярности является инвариантом графа и обозначается . Для нерегулярных графов не определено. Регулярные графы представляют особую сложность для многих алгоритмов.
Регулярный граф степени 0 (вполне несвязный граф, пустой граф, нуль-граф) — граф без рёбер.
Сверхстройное (звездообразное) дерево — дерево, в котором имеется единственная вершина степени больше 2.
Связность. Две вершины в графе связаны, если существует соединяющая их (простая) цепь.
Связный граф — граф, в котором все вершины связаны.
Сечение графа — множество рёбер, удаление которых делит граф на два изолированных подграфа, один из которых, в частности, может быть тривиальным графом.
Сеть — в принципе, то же, что и граф, хотя сетями обычно называют графы, вершины которых определённым образом помечены.
Ориентированная сеть — ориентированный граф, не содержащий контуров.
Сильная связность. Две вершины в ориентированном графесильно связаны, если существует путь из первой во вторую и из второй в первую.
Сильно связный орграф — орграф, в котором все вершины сильно связаны.
Смежность — понятие, используемое в отношении только двух рёбер либо только двух вершин: Два ребра, инцидентные одной вершине, называются смежными; две вершины, инцидентные одному ребру, также называются смежными. (ср. Инцидентность.)
Смешанный граф — граф, содержащий как ориентированные, так и неориентированные рёбра.
Совершенное паросочетание — паросочетание, содержащее все вершины графа.
Соединением двух графов и , не имеющих общих вершин, называется граф .[6]
Из определения видно, что соединение графов обладает свойствами коммутативности и ассоциативности
Спектр графа — множество всех собственных значений матрицы смежности с учётом кратных рёбер.
Степень вершины — количество рёбер графа G, инцидентных вершине x. Обозначается . Минимальная степень вершины графа G обозначается . а максимальная — .
Стягивание ребра графа — замена концов ребра одной вершиной, соседями новой вершины становятся соседи этих концов. Граф стягиваем к , если второй можно получить из первого последовательностью стягиваний рёбер.
Суграф (частичный граф) исходного графа — граф, содержащий все вершины исходного графа и подмножество его рёбер. (ср. Подграф.)
Суперграф — любой граф, содержащий исходный граф (то есть для которого исходный граф является подграфом)
Т
Тета-граф — граф, состоящий из объединения трёх путей, не имеющих внутри общих вершин, у которых конечные вершины одни и те же[7]
Тета-граф множества точек евклидовой плоскости строится как система конусов, окружающих каждую вершину с добавлением ребра для каждого конуса к точке множества, проекция которой на центральную ось конуса минимальна.
Тождественный граф — граф, у которого возможен один-единственный автоморфизм — тождественный. Образно говоря, тождественный граф — «абсолютно несимметричный» граф.
Укладка, или вложение графа: граф укладывается на некоторой поверхности, если его можно нарисовать на этой поверхности так, чтобы рёбра графа при этом не пересекались. (См. Планарный граф, Плоский граф.)
Укрытие — определённый тип функции на множествах вершин неориентированного графа. Если укрытие существует, его может использовать беглец чтобы выиграть игру преследования-уклонения на графе путём использования этой функции на каждом шаге игры для определения безопасных множеств вершин, куда можно перейти.
Упорядоченный граф — граф, в котором рёбра, выходящие из каждой вершины, однозначно пронумерованы, начиная с 1. Рёбра считаются упорядоченными в порядке возрастания номеров. При графическом представлении часто рёбра считаются упорядоченными в порядке некоторого стандартного обхода (например, против часовой стрелки).
n-факторизация графа — разбиение графа на независимые n-факторы.
Х
Хроматическое число графа — минимальное количество цветов, требуемое для раскраски вершин графа, при которой любые вершины, соединенные ребром, раскрашены в разные цвета.
Характеристический многочлен графа — характеристический многочлен его матрицы смежности.
Цепь в графе — маршрут, все рёбра которого различны. Если все вершины (а тем самым и рёбра) различны, то такая цепь называется простой (элементарной). В цепи вершины и называются концами цепи. Цепь с концами u и vсоединяет вершины u и v. Цепь, соединяющая вершины u и v, обозначается . Для орграфов цепь называется орцепью.
В некоторых источниках простая цепь — цепь, рёбра которой различны, что является более слабым условием.
Шестерёнка (обозначается ) — граф, получаемый из колеса путём размещения дополнительных вершин между каждой парой смежных вершин периметра. Шестерёнки принадлежат семейству рамочных графов и играют важную роль при описании запрещённых подграфов рамочных графов[8]
Э
Эйлеров граф — граф, в котором существует цикл, содержащий все рёбра графа по одному разу (вершины могут повторяться).
Эксцентриситет вершины — максимальное из всех минимальных расстояний от других вершин до данной вершины.
Элементарный путь — путь, вершины которого, за исключением, быть может, первой и последней, различны. Другими словами, простой путь не проходит дважды через одну вершину, но может начаться и закончиться в одной и той же вершине, в таком случае он называется циклом (элементарным циклом).
Элементарным стягиванием называется такая процедура: берём ребро (вместе с инцидентными ему вершинами, например, u и v) и «стягиваем» его, то есть удаляем ребро и отождествляем вершины u и v. Полученная при этом вершина инцидентна тем рёбрам (отличным от удалённого и друг друга), которым первоначально были инцидентны u или v.
Энергия графа — сумма абсолютных величин собственных значений матрицы смежности графа.