Двойственный графДвойственный граф к планарному графу — это граф, в котором вершины соответствуют граням графа ; две вершины соединены ребром если и только если соответствующие им грани графа имеют общее ребро. Например, двойственны друг к другу графы куба и октаэдра. Термин двойственный используется ввиду того, что это свойство симметрично — если H двойственен G, то G двойственен H (при условии, что G связен). То же самое понятие можно использовать для вложения графов в многообразия. Понятие двойственности графов отличается от рёберно-вершинной двойственности (рёберный граф) графа и эти два понятия не следует путать. Свойства
Ввиду двойственности, для любого результата, использующего число граней и вершин, можно обменять эти величины. Самодвойственным называют граф, который изоморфен своему двойственному графу. Например, самодвойственен граф тетраэдра. Алгебраическая двойственностьПусть G — связный граф. Алгебраически двойственным графу G называется граф G★ такой, что G и G★ имеют одно и то же множество рёбер, любой цикл в G является разрезом G★ и любой разрез G является циклом в G★. Любой планарный граф имеет алгебраически двойственный граф, в общем случае не единственный (двойственный граф определяется укладкой). Обратное тоже верно — как показал Хасслер в своём критерии планарности[2], связный граф планарен в том и только в том случае, если он имеет алгебраически двойственный граф. Тот же факт можно выразить в терминах теории матроидов: если M является графовым матроидом[англ.] графа G, то двойственным матроидом[англ.] M является графовый матроид в том и только случае, когда G планарен. Если G планарен, двойственный матроид является графовым матроидом двойственного G графа. Слабая двойственностьСлабодвойственный планарному графу — это подграф двойственного графа, в котором вершины соответствуют ограниченным граням исходного графа. Планарный граф является внешнепланарным в том и только в том случае, когда двойственный является лесом, и планарный граф является графом Халина в том и только в том случае, когда его слабодвойственный является двусвязным и внешнепланарным. Для любого планарного графа G, пусть G+ — планарный мультиграф, образованный добавлением одной вершины v в неограниченную грань графа G и соединением v со всеми вершинами внешней грани (несколько раз, если вершина появляется несколько раз на границе грани). Теперь G является слабодвойственным (планарного) двойственного G+ графа[3][4]. Примечания
Ссылки
|