Алгоритм Брона — КербошаАлгоритм Брона — Кербоша — метод ветвей и границ для поиска всех клик (а также максимальных по включению независимых множеств вершин) неориентированного графа. Разработан голландскими математиками Броном и Кербошем в 1973 году и до сих пор является одним из самых эффективных алгоритмов поиска клик. АлгоритмАлгоритм использует тот факт, что всякая клика в графе является его максимальным по включению полным подграфом. Начиная с одиночной вершины (образующей полный подграф), алгоритм на каждом шаге пытается увеличить уже построенный полный подграф, добавляя в него вершины из множества кандидатов. Высокая скорость обеспечивается отсечением при переборе вариантов, которые заведомо не приведут к построению клики, для чего используется дополнительное множество, в которое помещаются вершины, которые уже были использованы для увеличения полного подграфа. Алгоритм оперирует тремя множествами вершин графа:
Алгоритм является рекурсивной процедурой, применяемой к этим трем множествам. ПРОЦЕДУРА extend (candidates, not): ПОКА candidates НЕ пусто И not НЕ содержит вершины, СОЕДИНЕННОЙ СО ВСЕМИ вершинами из candidates, ВЫПОЛНЯТЬ: 1 Выбираем вершину v из candidates и добавляем её в compsub 2 Формируем new_candidates и new_not, удаляя из candidates и not вершины, не СОЕДИНЕННЫЕ с v 3 ЕСЛИ new_candidates и new_not пусты 4 ТО compsub – клика 5 ИНАЧЕ рекурсивно вызываем extend (new_candidates, new_not) 6 Удаляем v из compsub и candidates, и помещаем в not ВариацииНахождение максимальных (по включению) независимых множеств вершинНетрудно видеть, что задача о клике и задача о независимом множестве по сути эквивалентны: каждая из них получается из другой, путём построения дополнения графа — такого графа, в котором есть все вершины исходного графа, причем в дополнении графа вершины соединены ребром тогда и только тогда, если они не были соединены в исходном графе. Поэтому алгоритм Брона — Кербоша можно использовать для нахождения максимальных по включению независимых множеств вершин, если построить дополнение к исходному графу, либо изменив условие в основном цикле (условие остановки) и формирование новых множеств new_candidates и new_not:
Вычислительная сложностьЛинейна относительно количества клик в графе. Tomita, Tanaka и Haruhisa в 2006 показали, что в худшем случае алгоритм работает за O(3n/3), где n — количество вершин в графе. См. такжеЛитература
|
Portal di Ensiklopedia Dunia