Алгоритм ЛиАлгори́тм волново́й трассиро́вки (волновой алгоритм, алгоритм Ли) — алгоритм поиска пути, алгоритм поиска кратчайшего пути на планарном графе. Принадлежит к алгоритмам, основанным на методах поиска в ширину. В основном используется при компьютерной трассировке (разводке) печатных плат, соединительных проводников на поверхности микросхем. Другое применение волнового алгоритма — поиск кратчайшего расстояния на карте в компьютерных стратегических играх. Волновой алгоритм в контексте поиска пути в лабиринте был предложен Э. Ф. Муром[2]. Ли независимо открыл этот же алгоритм при формализации алгоритмов трассировки печатных плат в 1961 году[3][4][5]. Описание алгоритмаАлгоритм работает на дискретном рабочем поле (ДРП), представляющем собой ограниченную замкнутой линией фигуру, не обязательно прямоугольную, разбитую на прямоугольные ячейки, в частном случае — квадратные. Множество всех ячеек ДРП разбивается на подмножества: «проходимые» (свободные), т. е при поиске пути их можно проходить, «непроходимые» (препятствия), путь через эту ячейку запрещён, стартовая ячейка (источник) и финишная (приемник). Назначение стартовой и финишной ячеек условно, достаточно — указание пары ячеек, между которыми нужно найти кратчайший путь. Алгоритм предназначен для поиска кратчайшего пути от стартовой ячейки к конечной ячейке, если это возможно, либо, при отсутствии пути, выдать сообщение о непроходимости[6]. Работа алгоритма включает в себя три этапа: инициализацию, распространение волны и восстановление пути. Во время инициализации строится образ множества ячеек обрабатываемого поля, каждой ячейке приписываются атрибуты проходимости/непроходимости, запоминаются стартовая и финишная ячейки. Далее, от стартовой ячейки порождается шаг в соседнюю ячейку, при этом проверяется, проходима ли она, и не принадлежит ли ранее меченной в пути ячейке. Соседние ячейки принято классифицировать двояко: в смысле окрестности Мура и окрестности фон Неймана, отличающийся тем, что в окрестности фон Неймана соседними ячейками считаются только 4 ячейки по вертикали и горизонтали, в окрестности Мура — все 8 ячеек, включая диагональные. При выполнении условий проходимости и непринадлежности её к ранее помеченным в пути ячейкам, в атрибут ячейки записывается число, равное количеству шагов от стартовой ячейки, на первом шаге это будет 1. Каждая ячейка, меченная числом шагов от стартовой ячейки, становится стартовой и из неё порождаются очередные шаги в соседние ячейки. Очевидно, что при таком переборе будет найден путь от начальной ячейки к конечной, либо очередной шаг из любой порождённой в пути ячейки будет невозможен. Восстановление кратчайшего пути происходит в обратном направлении: при выборе ячейки от финишной ячейки к стартовой на каждом шаге выбирается ячейка, имеющая атрибут расстояния от стартовой на единицу меньше текущей ячейки. Очевидно, что таким образом находится кратчайший путь между парой заданных ячеек[6]. Трасс с минимальной числовой длиной пути, как при поиске пути в окрестностях Мура, так и фон Неймана может существовать несколько. Выбор окончательного пути в приложениях диктуется другими соображениями, находящимися вне этого алгоритма. Например, при трассировке печатных плат — минимумом линейной длины проложенного проводника. ПсевдокодИнициализация Пометить стартовую ячейку d := 0 Распространение волны ЦИКЛ ДЛЯ каждой ячейки loc, помеченной числом d пометить все соседние свободные непомеченные ячейки числом d + 1 КЦ d := d + 1 ПОКА (финишная ячейка не помечена) И (есть возможность распространения волны) Восстановление пути ЕСЛИ финишная ячейка помечена ТО перейти в финишную ячейку ЦИКЛ выбрать среди соседних ячейку, помеченную числом на 1 меньше числа в текущей ячейке перейти в выбранную ячейку и добавить её к пути ПОКА текущая ячейка — не стартовая ВОЗВРАТ путь найден ИНАЧЕ ВОЗВРАТ путь не найден См. такжеПримечания
Литература
Ссылки |