PKMYT1PKMYT1(protein kinase, membrane associated tyrosine/threonine 1)またはMyt1は、ヒトではPKMYT1遺伝子にコードされる酵素(プロテインキナーゼ)である[5][6][7]。 Myt1はWee1ファミリーの酵素であり、Wee1ファミリーにはさまざまな生物種においてサイクリン依存性キナーゼ(CDK)の活性を阻害する機能を果たすさまざまな酵素が含まれている。Myt1はCDKのTyr15とThr14の双方のリン酸化を介してCDKを不活性化することで、細胞周期の調節に重要な役割を果たしている。 Wee1ファミリー→詳細は「Wee1」を参照
Wee1ファミリーにはCDKの不活性化に関与している酵素が含まれている。さまざまな生物種で機能しているWee1ファミリーの酵素の例をいくつか次に挙げる。
Wee1は名称は異なるものの全ての真核生物に存在し、各生物でTyr15のリン酸化を担っている。Wee1がCdk1の主要な阻害因子である分裂酵母では、Wee1をコードする遺伝子の変異によって有糸分裂への早期移行が引き起こされる。一方、Wee1の過剰発現によって有糸分裂への移行が遮断される[8]。 リン酸化Myt1は、Tyr15とThr14のリン酸化を介してCDK活性の阻害に重要な役割を果たしている。Tyr15は高度に保存されており、主要なCDKの全てに存在する。動物細胞には他にThr14部位が存在し、さらにCDKの不活性化を補助している[8]。 Tyr15とThr14はCDKのATP結合部位に位置している。Tyr15とThr14のリン酸化はATPのリン酸部分の配向に干渉し、CDKの機能を阻害する。これらの部位のリン酸化は有糸分裂の開始時に特に重要であり、M期CDKの活性化時期の調節と関係している。また、S期CDKの活性化時期やG1/S期への移行にも関与していると考えられている[9]。 CDKはMyt1によるTyr15とThr14のリン酸化によって不活性化されるため、再び活性化されるためにはこれらの部位の脱リン酸化が必要である。こうした阻害部位の脱リン酸化はCdc25ファミリーによって行われる。脊椎動物では、CDC25AがG1/S期とG2/M期のチェックポイントを制御し、CDC25BとCDC25CはどちらもG2/M期のチェックポイントを制御している[9]。 有糸分裂Myt1とWee1は共に機能して、有糸分裂前にCdk1を阻害している。細胞周期のほとんどの時期を通じてMyt1とWee1の濃度は高く維持されており、Cdk1の不活性化を保証している。有糸分裂時には、Myt1とWee1の濃度は大きく低下し、Cdc25ファミリーのホスファターゼによる脱リン酸化活性化によってCdk1の活性化が引き起こされる[9]。 細胞内分布Myt1はゴルジ体や小胞体の膜に位置している。サイクリンB1-Cdk1複合体はほぼ全てが細胞質に存在しているため、Myt1はCdk1を阻害する最も重要なキナーゼである可能性がある。一方Wee1は大部分が核内に位置しており、核内に存在する少量のCdk1の阻害を維持していると考えられている[10]。ショウジョウバエではWee1の欠損は致死的とはならないことがさまざまな研究で示されており、有糸分裂を正常に行うためにはMyt1によるCdk1阻害で十分であることが示唆される。Myt1がCdk1阻害の主要因子であることを支持するさらなるエビデンスとして、ツメガエル卵母細胞にはWee1は存在せず、Myt1がCdk1の唯一の阻害因子として機能していることが挙げられる[9]。 調節Myt1、Wee1、Cdc25の調節は、Cdk1が関与するポジティブフィードバックループによって行われている。これらのタンパク質の調節のため、Cdk1は各タンパク質のN末端の調節領域の高リン酸化を行う[11]。この高リン酸化はCdc25では活性化、Myt1とWee1では阻害をもたらす。こうしたCdk1によるポジティブフィードバックループは双安定系の形成をもたらし、細胞は安定なCdk1不活性化状態か安定なCdk1活性化状態のいずれかの状態をとることとなる。この調節系はCdk1のオン・オフを迅速に切り替えるスイッチとなっており、一部に欠陥が生じた場合でも系が作動し続けるよう保証している。 また、プロテインキナーゼAKT1/PKBやPLK(ポロ様キナーゼ)もMyt1をリン酸化し、活性を調節することが示されている[12]。 出典
関連文献
外部リンク |
Portal di Ensiklopedia Dunia