このうち円積問題については、1882年に、理想化された定規とコンパスによる作図では有限回の手順で作図できないことが知られたにもかかわらず、その50年後でもなお、作図できるとする偽りの証明は発表され続けた。(英語版Squaring the circle Incorrect constructionsの節を参照のこと)。
^Schaaf, William L. (1973). A Bibliography of Recreational Mathematics, Volume 3. National Council of Teachers of Mathematics(英語版). pp. 161. https://archive.org/stream/ERIC_ED087631#page/n173/mode/2up. "Pseudomath. A term coined by Augustus De Morgan to identify amateur or self-styled mathematicians, particularly circle-squarers, angle-trisectors, and cube-duplicators, although it can be extended to include those who deny the validity of non-Euclidean geometries. The typical pseudomath has but little mathematical training and insight, is not interested in the results of orthodox mathematics, has complete faith in his own capabilities, and resents the indifference of professional mathematicians."
^Wantzel, P M L (1837). “Recherches sur les moyens de reconnaître si un problème de Géométrie peut se résoudre avec la règle et le compas.”. Journal de Mathématiques Pures et Appliquées. 1 2: 366–372.
^Johnson, H. M. (1936). “Pseudo-Mathematics in the Mental and Social Sciences”. The American Journal of Psychology48 (2): 342–351. doi:10.2307/1415754. ISSN0002-9556. JSTOR1415754.
Underwood Dudley (1987), A Budget of Trisections, Springer Science+Business Media. ISBN978-1-4612-6430-9. Revised and reissued in 1996 as The Trisectors, Mathematical Association of America. ISBN0-88385-514-3.
Underwood Dudley (1997), Numerology: Or, What Pythagoras Wrought, Mathematical Association of America. ISBN0-88385-524-0.
Clifford Pickover (1999), Strange Brains and Genius, Quill. ISBN0-688-16894-9.