フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ人数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863年 - 1932年) の提唱によって1936年に作られた賞のことである[5][6]。
概要
4年に一度開催される国際数学者会議 (ICM) において、顕著な業績を上げた40歳以下[注釈 1]の数学者(2名以上4名以下)に授与される[5]。ICMで同時に授与される賞としては、ネヴァンリンナ賞、ガウス賞、チャーン賞などがある。
数学に関する賞では最高の権威を有する[10][11]。しかし、若い数学者の優れた業績を顕彰し、その後の研究を奨励することが目的であり、「4年に一度」「40歳以下」「2名以上4名以下」という制限がある。ただし、唯一の例外として、「フェルマーの最終定理」の証明に成功したアンドリュー・ワイルズは証明当時すでに42歳になっていたが、その業績の重要性から1998年に45歳で「特別賞」を与えられた。
受賞者は西ヨーロッパとアメリカの数学者が通例で[12]、ダランベールかライプニッツの系譜に連なる場合が多い[12]。冷戦時には、共産圏の数学者との交流は困難であった。1970年、初めてソ連の数学者が受賞したが、海外渡航が許されず授賞式には出席できなかった。受賞者の出身国は多様化してきており、ベトナム、イラン、ブラジルなども受賞者を出している。2014年には初めての女性受賞者が誕生した[14]。なお、メダルは国際数学者会議の開幕式において名誉議長から手渡される。
フィールズ賞は、フィールズ賞選考委員会で決められる[5]。グリゴリー・ペレルマンは、2024年時点では受賞を辞退したただ一人の人物である。
他の贈賞との比較
「数学のノーベル賞」と呼ばれることもあるが[14]、賞としての性格は大きく異なる[注釈 2]。ノーベル賞は(存命であれば)受賞者の年齢に関係なく贈られるのに対し、フィールズ賞はその時点でまさに活躍中の40歳以下の若手数学者に贈賞されている。また、ノーベル賞は業績ごとに選考されるため、一つの業績に対して複数の共同受賞者が出ることが多くなっているがフィールズ賞は個人に贈られるものであり、共同受賞の例はない。
近年では、「年齢制限なし」「毎年授与」「高額賞金」などノーベル賞に近い性格を持つ国際的数学賞が次々と現れている。1980年に創設されたクラフォード賞は、毎年ではないものの数学上の業績に対して比較的高額な賞金を年齢制限なく与える国際学術賞である。ウルフ賞数学部門も、賞金規模はやや小さいものの、1978年以降ほぼ毎年、年齢制限なく与えられている。2000年には、特定の業績に対してのみノーベル賞級の高額賞金を年齢制限なく与える「ミレニアム懸賞問題」が発表され、世界中の関心を集めた。
2002年には、ノーベル賞により性格の近いアーベル賞が設立された。フィールズ賞とアーベル賞の両方を受賞した人物も存在する。
さらに2014年には、ノーベル賞をも超越する莫大な賞金額を誇る数学ブレイクスルー賞が創設された。
比較項目 |
数学ブレイクスルー賞 |
ミレニアム懸賞問題 |
ノーベル賞 |
アーベル賞 |
フィールズ賞
|
第1回
|
2015年 |
(創設は2000年) |
1901年 |
2003年 |
1936年
|
実施間隔
|
1年 |
不定 |
1年 |
1年 |
4年
|
年齢制限
|
なし |
なし |
なし |
なし |
40歳以下
|
賞金額
|
約3億円 |
約1億円 |
約1億円 |
約1億円 |
約200万円
|
授賞分野の制限
|
特になし |
特定業績のみ |
数学を対象としない |
特になし |
特になし
|
東洋人の受賞者
日本人の受賞者は、2024年現在、小平邦彦(1954年)、広中平祐(1970年)、森重文(1990年)の3人(国籍別では5番目に多い)であり、1990年以降受賞者は出ていない。
東洋系の受賞者は上記の3名以外に、丘成桐(中国系米国人)(1982年)、陶哲軒(中国系オーストラリア人)(2006年)、ゴ・バオ・チャウ(ベトナム系フランス人)(2010年)、マリアム・ミルザハニ(イラン人)(2014年)、マンジュル・バルガヴァ(インド系カナダ・米国人)(2014年)、許埈珥(韓国系米国人)(2022年)の6人がいる。
受賞者の一覧
名前の読み(名前の綴り、生年 - 没年)、国籍、受賞理由(英語)の順。国籍は受賞時の国名で記す。
- 1936年(オスロ)
「
|
Did important work of the Plateau problem which is concerned with finding minimal surfaces connecting and determined by some fixed boundary.
|
」
|
- 1950年(ケンブリッジ)
- 1954年(アムステルダム)
「
|
Achieved major results in the theory of harmonic integrals and numerous applications to Kählerian and more specifically to algebraic varieties. He demonstrated, by sheaf cohomology, that such varieties are Hodge manifolds.
|
」
|
「
|
Achieved major results on the homotopy groups of spheres, especially in his use of the method of spectral sequences. Reformulated and extended some of the main results of complex variable theory in terms of sheaves.
|
」
|
- 1958年(エディンバラ)
「
|
In 1954 invented and developed the theory of cobordism in algebraic topology. This classification of manifolds used homotopy theory in a fundamental way and became a prime example of a general cohomology theory.
|
」
|
- 1962年(ストックホルム)
「
|
Proved that a 7-dimensional sphere can have several differential structures; this led to the creation of the field of differential topology.
|
」
|
- 1966年(モスクワ)
- 1970年(ニース)
- 広中平祐(Heisuke Hironaka, 1931年 - ) 日本
「
|
Generalized work of Zariski who had proved for dimension ≤3 the theorem concerning the resolution of singularities on an algebraic variety. Hironaka proved the results in any dimension.
|
」
|
「
|
Made important advances in topology, the most well-known being his proof of the topological invariance of the Pontrjagin classes of the differentiable manifold. His work included a study of the cohomology and homotopy of Thom spaces.
|
」
|
「
|
Proved jointly with W. Feit that all non-cyclic finite simple groups have even order. The extension of this work by Thompson determined the minimal simple finite groups, that is, the simple finite groups whose proper subgroups are solvable.
|
」
|
- 1974年(バンクーバー)
「
|
Contributed to problems of the existence and structure of varieties of moduli, varieties whose points parametrize isomorphism classes of some type of geometric object. Also made several important contributions to the theory of algebraic surfaces.
|
」
|
- 1978年(ヘルシンキ)
「
|
Contributed several innovations that revised the study of multidimensional complex analysis by finding correct generalizations of classical (low-dimensional) results.
|
」
|
「
|
The prime architect of the higher algebraic K-theory, a new tool that successfully employed geometric and topological methods and ideas to formulate and solve major problems in algebra, particularly ring theory and module theory.
|
」
|
- 1982年(ワルシャワ)
「
|
Contributed to the theory of operator algebras, particularly the general classification and structure theorem of factors of type III, classification of automorphisms of the hyperfinite factor, classification of injective factors, and applications of the theory of C*-algebras to foliations and differential geometry in general.
|
」
|
「
|
Revolutionized study of topology in 2 and 3 dimensions, showing interplay between analysis, topology, and geometry. Contributed idea that a very large class of closed 3-manifolds carry a hyperbolic structure.
|
」
|
- 1986年(バークレー)
「
|
Received medal primarily for his work on topology of four-manifolds, especially for showing that there is a differential structure on euclidian four-space which is different from the usual structure.
|
」
|
「
|
Developed new methods for topological analysis of four-manifolds. One of his results is a proof of the four-dimensional Poincaré Conjecture.
|
」
|
- 1990年(京都)
「
|
for his discovery of an unexpected link between the mathematical study of knots – a field that dates back to the 19th century – and statistical mechanics, a form of mathematics used to study complex systems with large numbers of components.
|
」
|
- 森重文 (Shigefumi Mori, 1951年 -) 日本
「
|
for the proof of Hartshorne’s conjecture and his work on the classification of three-dimensional algebraic varieties.
|
」
|
- 1994年(チューリッヒ)
「
|
... such nonlinear partial differential equation simply do not have smooth or even C1 solutions existing after short times. ... The only option is therefore to search for some kind of "weak" solution. This undertaking is in effect to figure out how to allow for certain kinds of "physically correct" singularities and how to forbid others. ... Lions and Crandall at last broke open the problem by focusing attention on viscosity solutions, which are defined in terms of certain inequalities holding wherever the graph of the solution is touched on one side or the other by a smooth test function
|
」
|
「
|
proving stability properties - dynamic stability, such as that sought for the solar system, or structural stability, meaning persistence under parameter changes of the global properties of the system.
|
」
|
「
|
For his solution to the restricted Burnside problem.
|
」
|
- 1998年(ベルリン)
「
|
for his work on the introduction of vertex algebras, the proof of the Moonshine conjecture and for his discovery of a new class of automorphic infinite products
|
」
|
「
|
William Timothy Gowers has provided important contributions to functional analysis, making extensive use of methods from combination theory. These two fields apparently have little to do with each other, and a significant achievement of Gowers has been to combine these fruitfully.
|
」
|
「
|
contributions to four problems of geometry
|
」
|
- 2002年(北京)
- 2006年(マドリード)
「
|
for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow
|
」
|
- 2010年(ハイデラバード)
「
|
For his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
|
」
|
「
|
For his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation.
|
」
|
- 2014年(ソウル)[19]
「
|
for his profound contributions to dynamical systems theory have changed the face of the field, using the powerful idea of renormalization as a unifying principle.
|
」
|
「
|
for developing powerful new methods in the geometry of numbers, which he applied to count rings of small rank and to bound the average rank of elliptic curves.
|
」
|
「
|
for his outstanding contributions to the theory of stochastic partial differential equations, and in particular for the creation of a theory of regularity structures for such equations.
|
」
|
- 2018年(リオデジャネイロ)[20]
- 2022年(オンライン開催[注釈 3])[21]
「
|
For solving longstanding problems in the probabilistic theory of phase transitions in statistical physics, especially in dimensions three and four.
|
」
|
「
|
For bringing the ideas of Hodge theory to combinatorics, the proof of the Dowling–Wilson conjecture for geometric lattices, the proof of the Heron–Rota–Welsh conjecture for matroids, the development of the theory of Lorentzian polynomials, and the proof of the strong Mason conjecture.
|
」
|
「
|
For contributions to analytic number theory, which have led to major advances in the understanding of the structure of prime numbers and in Diophantine approximation. 解析的整数論に貢献し,素数の構造理解とディオファントス近似の理解に大きな進歩をもたらした[22]。
|
」
|
「
|
For the proof that the lattice provides the densest packing of identical spheres in 8 dimensions, and further contributions to related extremal problems and interpolation problems in Fourier analysis. 球充填問題を8次元と24次元で解決したことや,フーリエ解析における極値および補間問題への更なる貢献が評価[22]。
|
」
|
国籍別の受賞者数
受賞時の国籍が基準。二重国籍はそれぞれの国に1個。国旗は現在のもの。ただし、消滅した国の国旗は最後の受賞者の受賞時のもの。(2022年7月現在)
脚注
注釈
- ^ 正確な規定は次の通り:受賞年の1月1日より前に40歳の誕生日を迎えたものは候補となれない。ただし厳格な規定が成文化されたのは1966年のICMにおいてである。
- ^ たとえばアティヤはインタビューでそれらの名声と効果の違いについて比較し述べている[17]。また日本でフィールズ賞をとることは、ノーベル賞をとるようなものだが、英国では誰も気にとめてくれないなど、国によって扱われ方に違いがあることにも言及している。
- ^ フィールズ賞の授賞式はヘルシンキで行われた。
出典
参考文献
会議録
関連文献
関連項目
外部リンク
|
---|
1930年代 |
|
---|
1950年代 |
|
---|
1960年代 |
|
---|
1970年代 |
|
---|
1980年代 |
|
---|
1990年代 |
|
---|
2000年代 |
|
---|
2010年代 |
|
---|
2020年代 |
|
---|
カテゴリ |
|