楕円型複体数学の、特に偏微分方程式や微分幾何学における楕円型複体(だえんがたふくたい、英: elliptic complex)とは、楕円型作用素の概念を列に一般化したものである。楕円型複体は、ホッジ理論を展開する上で本質的となるド・ラーム複体とドルボー複体に共通の特徴を取り出したものである。アティヤ=シンガーの指数定理とアティヤ=ボットの不動点定理の関連でも現れる。 定義E0, E1, ..., Ek をある(通常コンパクトに取られる)滑らかな多様体 M 上のベクトル束とするとき、微分複体(differential complex)は次の微分作用素の列 で与えられる。ここでそれらの作用素は、Pi+1 o Pi=0 であるような Ei の切断の層である。微分複体が楕円型(elliptic)であるとは、表象の列 がゼロ切断の外側で完全であることを言う。ここで π は M への余接束 T*M の射影であり、π* はあるベクトル束の引き戻しである。 関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia