ヴァイルの定理 (幾何学)
幾何学において、ヴァイルの定理(ヴァイルのていり、英:Weill's theorem)とは、多角形の外接円と内接円に関する定理である[1][2][3]。ジョゼフ・リウヴィルの雑誌『Journal de Mathématiques Pures et Appliquées』で1878年、ヴァイル(Weill)が証明した[4][5][註 1]。書籍によっては、ワイルの定理、ウェイルの定理とも書かれている[6][7][8]。 定理nを3以上の整数とする。ポンスレの閉形定理によれば、ある2円を外接円、内接円とするn角形が一つあれば、そのようなn角形は無数に存在する[9]。このとき、n角形の辺と内接円の接点が成す多角形の幾何中心は一定である。これをヴァイルの定理と言う。また、その点はヴァイル点(Weill point)と呼ばれる。 1888年、ジョン・ケイシーはn個の接点のうちm個(mは、n≧m>0を満たす整数)の点の幾何中心の軌跡は定円であることを発見した[2]。ヴァイル点はn=mの場合である。 三角形のヴァイル点三角形のヴァイル点は、接触三角形の重心として定義される(三角形の重心は幾何中心と一致する)[10]。Encyclopedia of Triangle centersでは三角形の中心としてX(354)に登録されている。ヴァイル点WはOI線上に存在し、ヴァイル点と外心は、内心を
に内分する。ここでr,Rはそれぞれ内接円、外接円の半径である。ヴァイル点の三線座標は以下の式で与えられる[11]。
三角形のヴァイル点はアダムス円と3辺の6つ交点の幾何中心、コンウェイ円と3辺の6つの交点の幾何中心などと一致する[11]。 脚注出典
注釈
関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia