ラプラス原理ラプラス原理(ラプラスげんり、英: Laplace principle, Laplace's principle)は大偏差原理に関する理論の基本的な定理である。ラプラス原理を一般化したものとしてヴァラダンの補題がある。ラプラス原理は、固定された集合 A 上の exp(−θφ(x)) のルベーグ積分が、θ を大きくしていったときにどのような漸近的な振る舞いを見せるかについて述べる。実際の例としては、統計力学において逆温度を無限大する極限、すなわち温度が絶対零度に近づくとき、その系がどのように振る舞うかを議論する際に、ラプラス原理が用いられている。 ステートメントA をルベーグ可測な d 次元のユークリッド空間 Rd の部分集合とし、可測関数 φ : Rd → R について であるとする。このとき、以下の関係が成り立つ。 ここで ess inf は本質的下限 (essential infimum) を表す。充分大きな θ について、上の関係から次のような漸近表現が得られる。 応用に対して適用すれば、θ を大きくした場合の、ある事象(集合)A に対する確率の漸近表現を与えることができる。 たとえば X を R 上で正規分布する確率変数とすると、すべての可測集合 A について という関係が成り立つ。 参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia