ベルトランの逆説ベルトランの逆説(ベルトランのぎゃくせつ、英: Bertrand paradox)は、確率論の古典的解釈において発生する問題である。ジョゼフ・ベルトランが著作Calcul des probabilitésで、確率変数を導入する方法やメカニズムが明確に定義されない場合、確率がうまく定義できない場合があることを示す例として与えた。 ベルトランによる問題の定式化ベルトランのパラドックスは以下のようなものである。 ベルトランはこれに関して3つの主張を述べた。どれももっともらしく見えるが、結果は異なるものとなる[1]。
これらの方式は以下のような図で表される。弦は中点と(中点が円の中心である場合を除き)1対1に対応する。上に記した3つの選択方式は以下のような中点の分布を示す。方式1と2では一様でなく、方式3では一様な分布となる。一方、弦自体を描いた場合(下段)、方式2では円が視覚的に一様に塗り潰されているのに対し、方式1と3はそうではない。 もちろん、弦を選ぶための他の方式も容易に想像することができ、異なる確率を与えるものも多い。 古典的な解答この問題に対する古典的な解答は、以上のように、「無作為に」弦を選ぶ方法に依存する。すなわち、無作為な選択の方法が確定すれば、そしてそのときのみ、この問題はwell-definedな解をもつ。選択の方法は唯一ではないので、唯一の解は存在しえない。ベルトランによって提示された3つの解は異なった選択の方法に対応し、1つを他より良いとする理由は何もない。この問題のような、確率の古典的解釈が抱えるパラドックスは、頻度主義やベイズ確率といったより厳密な定式化を正当化するものとなった。 ジェインズの解1973年の論文 "The Well-Posed Problem" [2] で、エドウィン・ジェインズはベルトランのパラドックスに対し、「最大無知 (maximum ignorance)」の原則(問題文に記されていないいかなる情報も用いるべきではない、という原則)に基づいた解を提案した。ジェインズはベルトランの問題は特定の位置や大きさを与えていないと指摘し、したがって確定した客観的な解は大きさと位置に「中立」でなければならない、すなわち、解は拡大縮小と平行移動に関して不変でなければならないと主張した。 具体的に述べれば以下の通りである。弦が直径2の円上に無作為に置かれる(たとえば、1本の藁を遠くから投げるなどの方法で)としよう。このとき、より直径の小さい円(たとえば、1.1)を大きい円の中に置く。このとき弦の分布は、元の円と同じでなければならない。もし小さい円を大きい円の中で動かしても、やはり確率は不変でなければならない。方式3において、この時違いが出ることは明らかである。下の図で、大きい円と、小さい赤い円における弦の分布は本質的に異なる。 同じことが(図から読み取るのは難しいが)方式1にも言える。拡大縮小と移動の両方に関して不変なのは唯一方式2である。3は拡大縮小に関してのみ不変で、1はどちらでもない。 しかしジェインズは不変性を、与えられた方法を受容するか棄却するかの判断のみに用いたわけではない。それでは未知の方法で、不変性の条件を満たすものがあるという可能性が残る。彼は不変性から直ちに確率分布を求めるような積分方程式を用いた。この問題において、この積分方程式には唯一の解があり、それはすなわち方式2として上に挙げた、「無作為な半径」方式である。 物理的実験方式2は上に述べた不変性を持つ唯一の解であり、この性質はジェインズが述べた藁を投げる実験のほかに、統計力学や気体物理学のような物理系にも現れる。しかしながら、他の方式に基づいた答えを与えるような物理的実験を考えることも可能である。たとえば、「方式1」の解を得るためには、円の中心に回転する部品を固定し、2つの独立な回転から両端点を求めるものとすればよい。「方式3」の解を得るためには、円を糖蜜で覆い、蠅が初めて止まった点を弦の中点とすればよい[3]。異なる解を得るために実験を考案し、経験的に結果を確認している人々もいる[4][5]。 脚注
参考文献
外部リンク
|