パリー点幾何学において、パリー点 (ぱりーてん、Parry point)とは三角形の中心の一つである。 クラーク・キンバリングの「Encyclopedia of Triangle Centers」ではX(111)として登録されている。パリー点及びパリー円は1990年代初期のイギリス幾何学者シリル・パリーの研究を賞して名づけられた[1]。 パリー円△ABCについてその重心と二つの等力点を通る円をパリー円と言う。パリー円は重心座標[x,y,z]で以下の式で表される[2]。パリー円の中心はEncyclopedia of Triangle CentersでX(351)として表される。X(351)は三線座標で以下の様に表される。 パリー点△ABCのパリー円は外接円と2点で交わる。うち一つはキーペルト放物線の焦点である[2]。 もう一つを△ABCのパリー点という。 パリー点の三線座標は以下の様に表される。キーペルト放物線の焦点X(110)の三線座標は以下の様に表される。 パリー鏡映点シリル・パリーに関する点の一つにパリー鏡映点(Parry Reflection Point)がある[3]。A,B,Cを通り、オイラー線に平行な直線をそれぞれBC,CA,ABで鏡映した直線は一点で交わる。この点をパリー鏡映点X(399)と言う。 特徴
として、
で表される。 関連脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia