Complexité irréductibleLa complexité irréductible est la thèse selon laquelle certains systèmes biologiques sont trop complexes pour être le résultat de l'évolution de précurseurs plus simples ou « moins complets », du fait de mutations au hasard et de la sélection naturelle. Le terme a été inventé et défini en 1996 par le professeur de biochimie Michael Behe, un système de complexité irréductible étant « composé de plusieurs parties ajustées et interagissantes, qui contribuent chacune à sa fonction élémentaire, alors que l'absence d'une quelconque de ces parties empêche le fonctionnement du système »[1]. Les exemples cités par Behe, la coagulation en cascade, le moteur (ou corps basal) des flagelles cellulaires et le système immunitaire, ne pourraient donc être le résultat de l'évolution naturelle : tout système précurseur au système complet ne fonctionnerait pas, et ne constituerait donc pas un avantage sélectif. De façon plus générale, cet argument est utilisé par les partisans du créationnisme et du dessein intelligent pour réfuter la théorie scientifique actuelle de l'évolution et prouver l'implication d'une cause divine ou intelligente dans la création de la vie. Ces thèses sont anciennes et reprennent l'argument téléologique de l'analogie du Grand Horloger. En dehors des systèmes biochimiques présentés par Behe, un exemple très couramment avancé de système trop complexe pour être le résultat de l'évolution est l'œil. La thèse de la complexité irréductible est rejetée par une très large majorité de la communauté scientifique[2] ; elle est souvent considérée comme pseudoscientifique[3]. Des travaux scientifiques ont montré que les exemples présentés par Behe ne répondaient pas à sa définition, et des précurseurs ont été identifiés pour certains d'entre eux. Les critiques considèrent que la thèse de la complexité irréductible est fondée sur une incompréhension du fonctionnement de ces systèmes biochimiques, et une méconnaissance des mécanismes de l'évolution (en particulier l'exaptation). Elle est également considérée comme un excellent exemple d'argumentum ad ignorandam (argument d'ignorance, sophisme par lequel on déclare fausse une proposition qui n'a pas été démontrée vraie). Bien qu'elle ait été rejetée en tant que théorie scientifique lors du procès de Dover[4], à l'issue duquel la cour a jugé que « La thèse du Professeur Behe sur la complexité irréductible a été réfutée par des articles scientifiques publiés dans des revues à comité de lecture, et a été rejetée par la communauté scientifique dans son ensemble » procès de Dover (p. 64)[2], le concept de complexité irréductible reste un argument courant pour les partisans du dessein intelligent et d'autres créationnistes. Histoire du conceptPreuve téléologique et Grand HorlogerL'argument de complexité irréductible est un descendant de la preuve téléologique de l'existence de Dieu. C'est le fameux argument du Grand Horloger ou du Grand Architecte selon lequel la complexité de la nature implique l'existence de Dieu de la même façon que l'existence d'une horloge implique celle d'un horloger. Cet argument a une longue histoire qui remonte au moins au Ier siècle av. J.-C. avec De natura deorum (ii.34) de Cicéron : « Un cadran solaire ou une clepsydre donnent l'heure du fait de leur conception et non par hasard. Comment pouvez-vous donc imaginer que l'univers, comme un tout, est sans but et sans intelligence, quand il contient tout, y compris ces objets et leurs artisans ? » Le déiste Voltaire le reprend dans un distique célèbre de sa satire Les cabales (1772) :
Citation à mettre en perspective avec ce propos de jeunesse dans le Traité de métaphysique (1734) :
Les implications de la complexité des organismes vivants et des interactions entre leurs éléments ont été discutées par différents auteurs et savants. Au début du XVIIe siècle, Nicolas Malebranche[5] utilise cette idée en faveur de la préformation (théorie qui voit l'embryon comme un être vivant « miniature » où tous les organes sont déjà présents), plutôt que de l'épigénèse (la complexité apparaît au fur et à mesure du développement). Dans une application différente, au début du XIXe siècle Georges Cuvier utilisa le concept de « corrélation des parties » dans la reconstitution de l'anatomie d'animaux à partir de restes épars[6],[7]. Dans le monde anglo-saxon, l'argument du Grand Horloger est développé et popularisé par le révérend William Paley dans sa Théologie naturelle (1802). Prenant l'analogie d'une montre trouvée par hasard, il conclut que la structure complexe des êtres vivants et l'adaptation remarquable des plantes et des animaux sont le fait d'un concepteur intelligent. Le monde est donc une création de Dieu, et montre la nature de ce créateur. Dieu a conçu avec attention « même le plus humble et le plus insignifiant des organismes ». Charles Darwin rejette la preuve téléologique en proposant une autre explication à la complexité et la diversité du vivant : l'évolution par la sélection naturelle. Sans le nommer ainsi, il identifie l'argument de la complexité irréductible comme un moyen possible de réfuter les résultats de sa théorie de l'évolution. Dans L'Origine des espèces[8], il écrit : « Si on pouvait démontrer qu'il existe un organe complexe, qui ne pourrait avoir été formé par de nombreuses petites modifications successives, ma théorie s'effondrerait complètement. Mais je n'en trouve aucun exemple ». Le généticien Hermann Muller expose, en 1939, un concept similaire à la complexité irréductible, mais pas de façon problématique vis-à-vis de l'évolution. Au contraire, il présente l'« intrication » des éléments biologiques comme une conséquence attendue de l'évolution, qui conduit à l'irréversibilité de certains changements évolutifs[9] : Ayant été ainsi entretissée au sein de la trame la plus intime de l'organisme, la caractéristique précédemment nouvelle ne peut plus être retirée impunément, et peut être devenue nécessaire et vitale[10]. En 1952, le biologiste Ludwig von Bertalanffy propose un concept précurseur de la complexité irréductible[11] : les systèmes organiques complexes doivent être étudiés en tant que systèmes complets irréductibles pour pouvoir comprendre leur fonctionnement. Il étend ses travaux sur la complexité biologique à une théorie générale des systèmes. Après la découverte de la structure de l'ADN par James Watson et Francis Crick au début des années 1950, la théorie générale des systèmes perd la plupart de ses adhérents en sciences physiques et biologie. Ce triomphe du point de vue mécaniste en biochimie est exposé dans Le hasard et la nécessité de Jacques Monod[12]. Cependant, la théorie des systèmes reste utilisée dans les sciences sociales. Complexité irréductibleDans son livre Darwin's Black Box[1], le biochimiste Michael Behe, reprenant la thèse de William Paley, définit et applique le terme « complexité irréductible » à certains systèmes complexes en biologie cellulaire. Il cherche à montrer que les mécanismes de l'évolution ne peuvent expliquer le développement de ces systèmes « irréductiblement complexes ». DéfinitionsLe terme « complexité irréductible » a été défini par Behe :
Behe a donné une seconde définition (« définition évolutionniste ») :
Le partisan du dessein intelligent William Dembski donne cette définition :
Explications et implications : le dessein intelligentLes partisans du dessein intelligent utilisent ce concept et les exemples de systèmes de « complexité irréductible », pour en conclure que le monde vivant est mieux expliqué par l'intervention d'une cause intelligente que par les mécanismes de la théorie de l'évolution. Selon la théorie de l'évolution, les variations génétiques adviennent au hasard. L'environnement « sélectionne » les variations les mieux adaptées, qui sont ensuite transmises aux générations suivantes. Les changements au cours du temps se font du fait de l'action graduelle des forces naturelles, de façon parfois lente ou parfois rapide (voir équilibre ponctué). Ce processus permet l'adaptation de structures complexes depuis des formes plus simples, ou de convertir des structures complexes d'une fonction à une autre. Behe et la plupart des partisans du dessein intelligent ne remettent pas en cause tout le rôle des mécanismes évolutifs dans le dévoppement de la vie organique à l'échelle de la microévolution (comme les variations de longueur des becs des pinsons de Darwin). Mais ils jugent qu'ils ne peuvent rendre compte de la complexité irréductible, car aucun des éléments d'un système irréductible ne serait fonctionnel ou avantageux avant que le système complet ne soit en place : « un système de complexité irréductible ne peut pas être produit directement (c'est-à-dire, par une amélioration continue de la fonction initiale, qui garde le même mécanisme) par de petites modifications successives d'un système précurseur, car tout précurseur d'un système de complexité irréductible auquel il manque un élément est par définition non fonctionnel. » (Behe) La complexité irréductible n'est donc pas un argument que l'évolution n'existe pas, mais plutôt qu'elle est « incomplète ». Dans le dernier chapitre de Darwin's Black Box[1], Behe conclut que la complexité irréductible est une preuve du dessein intelligent. Exemples présentésBehe et d'autres ont présenté un certain nombre d'exemples de systèmes biologiques qu'ils pensent être de complexité irréductible. Les exemples donnés ne sont pas, selon la communauté scientifique dans son ensemble, probants. ŒilL'œil est un exemple fameux de structure présentée comme de « complexité irréductible », du fait des nombreux éléments intriqués et sophistiqués, dépendant apparemment tous les uns des autres. Il est fréquemment cité par les partisans du dessein intelligent et du créationnisme. Dans un passage fréquemment cité de L'Origine des espèces[8], Charles Darwin reconnaît lui-même que le développement de l'œil est une difficulté pour sa théorie, notant que « supposer que l'œil [...] peut avoir été formé par sélection naturelle semble, je le confesse volontiers, absurde au plus haut degré ». Cependant il continue en notant que si « la difficulté de croire que l'œil complet et parfait peut être formé par le mécanisme de la sélection naturelle, bien qu'insurmontable par notre imagination, ne peut être considérée comme réelle », et il propose un schéma grossier de lignée évolutive possible, à partir d'exemples de plus en plus complexes d'yeux de différentes espèces (Charles Darwin, L'Origine des espèces, p. 186 et suiv[8]). Depuis Darwin l'évolution de l'œil est bien mieux comprise. Bien que l'observation et l'analyse des ancêtres de l'œil dans les fossiles soit problématique, du fait que les tissus mous ne laissent pas d'empreintes ou de restes, la génétique et l'anatomie comparative vont dans le sens d'un ancêtre commun pour tous les yeux[14],[15],[16]. Les éléments actuels permettent de proposer des lignées évolutives possibles aboutissant aux caractéristiques anatomiques de l'œil. Un schéma évolutif possible est le suivant :
Selon Behe, si l'évolution des grandes caractéristiques anatomiques de l'œil a été bien expliquée, la complexité du détail des réactions biochimiques nécessaires à l'échelle moléculaire pour la sensibilité à la lumière, défie encore les explications. Le créationniste Jonathan Sarfati décrit l'œil comme « le plus grand défi [des évolutionnistes] en tant que superbe exemple de complexité irréductible dans la création divine », mettant particulièrement en avant la « grande complexité » de la transparence de la cornée[22]. Exemples en biochimie cellulaireMichael Behe a proposé un certain nombre d'exemples de systèmes biochimiques complexes de « complexité irréductible » : le flagelle des cellules, la coagulation sanguine, et le système immunitaire. Tapette à sourisBehe utilise la tapette à souris comme exemple illustratif de ce concept. Une tapette à souris est constituée de plusieurs pièces - la base, le déclencheur, le ressort, l'arceau. Toutes ces pièces doivent être en place pour que la tapette fonctionne, et la suppression de n'importe laquelle entraîne la perte de cette fonctionnalité. De la même façon, les systèmes biologiques nécessitent plusieurs éléments travaillant ensemble pour fonctionner. Selon lui, il n'est pas possible de trouver une succession de petites évolutions viables, car l'avantage sélectif de la fonction n'est présent que quand tous les éléments sont assemblés. FlagelleLe flagelle, comme les cils de certaines cellules et bactéries, constitue un moteur moléculaire rotatif qui assure leur mobilité. Dans le cas des procaryotes (comme la bactérie E. coli), leur fonctionnement nécessite l'interaction d'une quarantaine de protéines complexes, et l'absence d'une seule de ces protéines empêche le flagelle de fonctionner. Coagulation sanguineLa coagulation sanguine chez les vertébrés se fait par une cascade complexe de processus biochimiques présentée par Behe comme un exemple de complexité irréductible[23]. Il en est de même des anticorps du système immunitaire, qui présentent à la fois une substance marqueur et une substance tueur, indispensables l'une et l'autre au fonctionnement. Réponse des évolutionnistesDe même que le dessein intelligent, concept qu'elle est censée soutenir, la complexité irréductible a été largement rejetée par la communauté scientifique. Les critiques jugent qu'une « complexité irréductible », telle qu'elle est définie par Behe, peut être générée par des mécanismes évolutifs connus, comme l'exaptation. Des chemins évolutifs plausibles ont été proposés pour les trois exemples présentés par Behe comme étant de complexité irréductible : la coagulation, le système immunitaire[24] et le flagelle[25],[26]. Il en est de même l'exemple illustratif de la tapette à souris : le professeur de biologie John McDonald a montré comment on pouvait la considérer comme « facilement réductible », jusqu'à un seul élément[21]. Réductibilité des « systèmes irréductibles »La thèse de la complexité irréductible implique que les éléments nécessaires d'un système ont toujours été nécessaires, et ne peuvent donc avoir été ajoutés les uns après les autres. Cependant, dans l'évolution, un élément qui est seulement avantageux au début peut devenir nécessaire ensuite. Par exemple, on a découvert par la suite qu'un des facteurs de la coagulation, cité par Behe comme un élément de la cascade de coagulation, était absent chez les baleines, et n'est donc pas indispensable pour la coagulation[27]. On a montré récemment que le corps basal du flagelle est similaire au système de sécrétion de type III (TTSS), une structure en forme d'aiguille que des germes pathogènes tels que la salmonelle et Yersinia pestis utilisent pour injecter des toxines dans les cellules eucaryotes. La base de l'aiguille a de nombreux éléments communs avec le flagelle, mais sans la plupart des protéines qui font fonctionner le flagelle. Ainsi, retirer des éléments du flagelle ne le rend pas nécessairement inutile. Ainsi, selon Miller, « les éléments de ce système réputé de complexité irréductible ont en fait des fonctions qui leur sont propres. »[28],[29],[30]. Cela est vrai pour la majeure partie de la structure du flagelle ; sur 42 protéines qu'on y trouve, 40 ont été observées dans différents canaux biologiques[31]. Évolution des systèmes irréductiblesDifférents mécanismes évolutifs permettent d'expliquer la formation de systèmes de complexité apparemment irréductible. Niall Shanks et Karl H. Joplin, de East Tennessee State University, ont montré que des systèmes satisfaisants à la définition de Behe de la complexité biochimique irréductible peuvent apparaître naturellement et spontanément du fait de processus chimiques auto-organisés[32],[33]. Ils affirment également que les systèmes biochimiques et moléculaires évolués présentent en fait une « complexité redondante » – ils jugent que Behe surestime l'importance de la complexité irréductible à cause d'une vision simpliste et linéaire des réactions biochimiques, prenant des instantanés des caractérististiques de systèmes, structures et processus biologiques et ignorant la complexité redondante du contexte dans lequel s'insèrent ces caractéristiques. En outre, des simulations informatiques ont montré qu'il était possible pour des systèmes de complexité irréductible d'évoluer naturellement[34]. Le professeur Marc W. Kirschner, directeur du département de biologie des systèmes de la Harvard Medical School, et John C. Gerhart, professeur en biologie moléculaire et cellulaire à University of California, Berkeley ont proposé en 2005 la théorie de la variation facilitée, qui explique comment certaines mutations ou changement peuvent engendrer une apparente complexité irréductible. Échafaudages de l'évolutionLe fait que retirer un élément d'un système organique entraîne le non-fonctionnement ne prouve pas que le système ne peut avoir été formé par un processus évolutif progressif. En 1985, Graham Cairns-Smith se demande à propos de l'« intrication » des systèmes biologiques « Comment une collaboration complexe entre des éléments peut-elle évoluer par petites étapes ? », et répond en utilisant l'analogie de l'échafaudage dans la construction d'une arche de pierre ; si on retire n'importe quelle pierre d'une arche, elle s'effondre (en ce sens elle est de « complexité irréductible ») ; pourtant elle peut être construite sans problème, une pierre après l'autre, à l'aide d'un échafaudage (ou cintre) que l'on retire après : « Clairement il y a eu des échafaudages. Avant que les multiples éléments de la biochimie actuelle ne puissent s'appuyer les uns sur les autres, ils ont dû s'appuyer sur quelque chose d'autre »[35]. L'évolution n'agit pas nécessairement linéairement vers la complexification ; elle peut simplifier tout autant que complexifier. De ce fait des systèmes biologiques apparemment de complexité irréductible peuvent être le résultat d'une phase de complexification suivie d'une phase de simplification. Pour l'exemple des anticorps, présenté par Behe, on a la substance « marqueur » et la substance « tueur », qui, pour la première, repère et marque les « envahisseurs », et, pour la seconde, tue ce qui a été marqué. Selon Behe, le marqueur et le tueur sont, par eux-mêmes, inutiles, et doivent donc avoir été créés en même temps. Le tueur ne peut tuer ce qu'il ne peut trouver, et le marqueur ne peut tuer même s'il trouve une cible. Cependant, avec un remplacement progressif, un marqueur différent peut avoir commencé comme tueur et marqueur à la fois. Puis un aide-tueur rejoint cette armée du fait de ses particularités intéressantes. Ce second tueur dépend toujours du premier pour trouver la cible. Il est possible qu'au cours du temps le premier tueur-marqueur se spécialise en marquage et soit remplacé par une substance similaire uniquement marqueur (éventuellement plus adaptée que la première à double usage). Ainsi chaque étape apporte un avantage sélectif, et le résultat final est une paire interdépendante qui ne ressemble pas à la substance initiale. Cet exemple peut être représenté ainsi :
Ce qu'on observe aujourd'hui est « M K ». Selon les opposants au concept de complexité, Behe se trompe en postulant que si la structure actuelle est M K, elle a dû commencer soit par M soit par K. Adaptation progressive à de nouvelles fonctions : l'exaptationLes arguments pour l'irréductibilité présupposent généralement que les choses ont commencé de la même façon qu'elles ont fini – c'est-à-dire comme on les observe actuellement. Mais ce n'est pas nécessairement le cas. Les précurseurs de systèmes complexes quand ils ne sont pas utiles en eux-mêmes, peuvent être utiles à d'autres fonctions sans rapport. L'évolution se fait de façon aveugle et désordonnée, dans laquelle la fonction d'une forme initiale n'est pas nécessairement la même que celle de la forme finale : c'est le phénomène d'exaptation (par opposition à l'adaptation). L'enclume dans l'oreille des mammifères (dérivée de l'os carré dans la mâchoire), et le pouce du panda (dérivé d'une excroissance osseuse du poignet) sont des exemples classiques. SophismesLes critiques[36] voient la complexité irréductible comme un cas particulier de la thèse « la complexité est la preuve d'un dessein » (argument du Grand Horloger), et la voient donc comme un argument d'ignorance (sophisme dans lequel on considère comme faux ce qui n'a pas été prouvé), un argument du « dieu bouche-trous » (God of the gaps)[37] et un argument de manque d'imagination[38],[39]. Les critiques considèrent également que l'idée que la complexité irréductible, en tant fondamentalement qu'argument contre la théorie de l'évolution, impliquerait celle du dessein intelligent comme un faux dilemme, supposant qu'il n'y a que deux modèles valides[40]. Behe lui-même reconnaît que même si les scientifiques n'imaginent pas actuellement comment un système a évolué vers un état de complexité irréductible, ceci ne prouve pas qu'une évolution n'ait pas pu le produire. Le scientifique Steve Mirsky l'a décrit comme une « stratégie de reddition intellectuelle totale »[41]. Complexité irréductible au procès de Dover[2]Le prononcé du jugement précise que « le dessein intelligent n'est pas de la science et est essentiellement de nature religieuse »[4]. Lors de ses témoignages au procès, Behe a admis qu'aucun article publié dans une revue scientifique à comité de lecture ne soutenait sa thèse selon laquelle des systèmes moléculaires complexes, comme le flagelle bactérien, la coagulation en cascade et le système immunitaire sont le résultat d'une cause intelligente, ni que certaines structures moléculaires complexes sont de complexité irréductible[2]. Dans les attendus du jugement, le juge Jones a spécifiquement cité Behe et la complexité irréductible (Memorandum Opinion)[2] :
Notes et références
Voir aussiBibliographie
Articles connexes
|