In probability theory, reflected Brownian motion (or regulated Brownian motion,[1][2] both with the acronym RBM) is a Wiener process in a space with reflecting boundaries.[3] In the physical literature, this process describes diffusion in a confined space and it is often called confined Brownian motion. For example it can describe the motion of hard spheres in water confined between two walls.[4]
where X(t) is an unconstrained Brownian motion with drift μ and variance Σ, and[9]
with Y(t) a d–dimensional vector where
Y is continuous and non–decreasing with Y(0) = 0
Yj only increases at times for which Zj = 0 for j = 1,2,...,d
Z(t) ∈ , t ≥ 0.
The reflection matrix describes boundary behaviour. In the interior of the process behaves like a Wiener process; on the boundary "roughly speaking, Z is pushed in direction Rj whenever the boundary surface is hit, where Rj is the jth column of the matrix R."[9]
The process Yj is the local time of the process on the corresponding section of the boundary.
Stability conditions
Stability conditions are known for RBMs in 1, 2, and 3 dimensions. "The problem of recurrence classification for SRBMs in four and higher dimensions remains open."[9] In the special case where R is an M-matrix then necessary and sufficient conditions for stability are[9]
The marginal distribution (transient distribution) of a one-dimensional Brownian motion starting at 0 restricted to positive values (a single reflecting barrier at 0) with drift μ and variance σ2 is
For fixed t, the distribution of Z(t) coincides with the distribution of the running maximum M(t) of the Brownian motion,
But be aware that the distributions of the processes as a whole are very different. In particular, M(t) is increasing in t, which is not the case for Z(t).
The heat kernel for reflected Brownian motion at :
For the plane above
Multiple dimensions
The stationary distribution of a reflected Brownian motion in multiple dimensions is tractable analytically when there is a product form stationary distribution,[10] which occurs when the process is stable and[11]
where ηk = 2μkγk/Σkk and γ = R−1μ. Closed-form expressions for situations where the product form condition does not hold can be computed numerically as described below in the simulation section.
^Harrison, J. M.; Reiman, M. I. (1981). "On the Distribution of Multidimensional Reflected Brownian Motion". SIAM Journal on Applied Mathematics. 41 (2): 345–361. doi:10.1137/0141030.
^ abcdeSkorokhod, A. V. (1962). "Stochastic Equations for Diffusion Processes in a Bounded Region. II". Theory of Probability and Its Applications. 7: 3–23. doi:10.1137/1107002.
^Chung, K. L.; Zhao, Z. (1995). "Killed Brownian Motion". From Brownian Motion to Schrödinger's Equation. Grundlehren der mathematischen Wissenschaften. Vol. 312. p. 31. doi:10.1007/978-3-642-57856-4_2. ISBN978-3-642-63381-2.