In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension.[1][2] Such models are often described as M/G/1 type Markov chains because they can describe transitions in an M/G/1 queue.[3][4] The method is a more complicated version of the matrix geometric method and is the classical solution method for M/G/1 chains.[5]
Method description
An M/G/1-type stochastic matrix is one of the form[3]
where Bi and Ai are k × k matrices. (Note that unmarked matrix entries represent zeroes.) Such a matrix describes the embedded Markov chain in an M/G/1 queue.[6][7] If P is irreducible[broken anchor] and positive recurrent then the stationary distribution is given by the solution to the equations[3]
where e represents a vector of suitable dimension with all values equal to 1. Matching the structure of P, π is partitioned to π1, π2, π3, …. To compute these probabilities the column stochastic matrix G is computed such that[3]
G is called the auxiliary matrix.[8] Matrices are defined[3]
^Neuts, M. F. (1984). "Matrix-analytic methods in queuing theory". European Journal of Operational Research. 15: 2–12. doi:10.1016/0377-2217(84)90034-1.
^ abcdefgMeini, B. (1997). "An improved FFT-based version of Ramaswami's formula". Communications in Statistics. Stochastic Models. 13 (2): 223–238. doi:10.1080/15326349708807423.
^Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Shridharbhai Trivedi, Kishor (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2 ed.). John Wiley & Sons, Inc. p. 250. ISBN978-0471565253.
^Ramaswami, V. (1988). "A stable recursion for the steady state vector in markov chains of m/g/1 type". Communications in Statistics. Stochastic Models. 4: 183–188. doi:10.1080/15326348808807077.