In queueing theory, a discipline within the mathematical theory of probability, quasireversibility (sometimes QR) is a property of some queues. The concept was first identified by Richard R. Muntz[1] and further developed by Frank Kelly.[2][3] Quasireversibility differs from reversibility in that a stronger condition is imposed on arrival rates and a weaker condition is applied on probability fluxes. For example, an M/M/1 queue with state-dependent arrival rates and state-dependent service times is reversible, but not quasireversible.[4]
A network of queues, such that each individual queue when considered in isolation is quasireversible, always has a product form stationary distribution.[5] Quasireversibility had been conjectured to be a necessary condition for a product form solution in a queueing network, but this was shown not to be the case. Chao et al. exhibited a product form network where quasireversibility was not satisfied.[6]
Definition
A queue with stationary distribution is quasireversible if its state at time t, x(t) is independent of
the arrival times for each class of customer subsequent to time t,
the departure times for each class of customer prior to time t
^Kelly, F.P. (1982). Networks of quasireversible nodesArchived 2007-02-21 at the Wayback Machine. In Applied Probability and Computer Science: The Interface (Ralph L. Disney and Teunis J. Ott, editors.) 1 3-29. Birkhäuser, Boston
^Chao, X.; Miyazawa, M.; Serfozo, R. F.; Takada, H. (1998). "Markov network processes with product form stationary distributions". Queueing Systems. 28 (4): 377. doi:10.1023/A:1019115626557. S2CID14471818.
^Dao-Thi, T. H.; Mairesse, J. (2005). "Zero-Automatic Queues". Formal Techniques for Computer Systems and Business Processes. Lecture Notes in Computer Science. Vol. 3670. p. 64. doi:10.1007/11549970_6. ISBN978-3-540-28701-8.