Autokey cipherAn autokey cipher (also known as the autoclave cipher) is a cipher that incorporates the message (the plaintext) into the key. The key is generated from the message in some automated fashion, sometimes by selecting certain letters from the text or, more commonly, by adding a short primer key to the front of the message. There are two forms of autokey cipher: key-autokey and text-autokey ciphers. A key-autokey cipher uses previous members of the keystream to determine the next element in the keystream. A text-autokey uses the previous message text to determine the next element in the keystream. HistoryThis cipher was invented in 1586 by Blaise de Vigenère with a reciprocal table of ten alphabets. Vigenère's version used an agreed-upon letter of the alphabet as a primer, making the key by writing down that letter and then the rest of the message.[1] More popular autokeys use a tabula recta, a square with 26 copies of the alphabet, the first line starting with 'A', the next line starting with 'B' etc. Instead of a single letter, a short agreed-upon keyword is used, and the key is generated by writing down the primer and then the rest of the message, as in Vigenère's version. To encrypt a plaintext, the row with the first letter of the message and the column with the first letter of the key are located. The letter in which the row and the column cross is the ciphertext letter. MethodThe autokey cipher, as used by members of the American Cryptogram Association, starts with a relatively-short keyword, the primer, and appends the message to it. For example, if the keyword is Plaintext: attackatdawn Key: QUEENLYATTACKATDAWN Ciphertext: QNXEPVYTWTWP The ciphertext message would thus be "QNXEPVYTWTWP". To decrypt the message, the recipient would start by writing down the agreed-upon keyword. QNXEPVYTWTWP QUEENLY The first letter of the key, Q, would then be taken, and that row would be found in a tabula recta. That column for the first letter of the ciphertext would be looked across, also Q in this case, and the letter to the top would be retrieved, A. Now, that letter would be added to the end of the key: QNXEPVYTWTWP QUEENLYA a Then, since the next letter in the key is U and the next letter in the ciphertext is N, the U row is looked across to find the N to retrieve T: QNXEPVYTWTWP QUEENLYAT at That continues until the entire key is reconstructed, when the primer can be removed from the start. With Vigenère's autokey cipher, a single mistake in encryption renders the rest of the message unintelligible.[3] CryptanalysisAutokey ciphers are somewhat more secure than polyalphabetic ciphers that use fixed keys since the key does not repeat within a single message. Therefore, methods like the Kasiski examination or index of coincidence analysis will not work on the ciphertext, unlike for similar ciphers that use a single repeated key.[3] A crucial weakness of the system, however, is that the plaintext is part of the key. That means that the key will likely contain common words at various points. The key can be attacked by using a dictionary of common words, bigrams, trigrams etc. and by attempting the decryption of the message by moving that word through the key until potentially-readable text appears. Consider an example message plaintext: meetatthefountain primer: KILT autokey: KILTMEETATTHEFOUN The message is then encrypted by using the key and the substitution alphabets, here a tabula recta: plaintext: meetatthefountain key: KILTMEETATTHEFOUN ciphertext: WMPMMXXAEYHBRYOCA The attacker receives only the ciphertext and can attack the text by selecting a word that is likely to appear in the plaintext. In this example, the attacker selects the word ciphertext: WMP MMX XAE YHB RYO CA key: THE THE THE THE THE .. plaintext: dfl tft eta fax yrk .. ciphertext: W MPM MXX AEY HBR YOC A key: . THE THE THE THE THE . plaintext: . tii tqt hxu oun fhy . ciphertext: WM PMM XXA EYH BRY OCA key: .. THE THE THE THE THE plaintext: .. wfi eqw lrd iku vvw In each case, the resulting plaintext appears almost random because the key is not aligned for most of the ciphertext. However, examining the results can suggest locations of the key being properly aligned. In those cases, the resulting decrypted text is potentially part of a word. In this example, it is highly unlikely that unlikely ←——————————————————→ promising eqw dfl tqt ... ... ... ... eta oun fax A correct plaintext fragment is also going to appear in the key, shifted right by the length of the keyword. Similarly, the guessed key fragment ( Trying that with shift by 4: ciphertext: WMPMMXXAEYHBRYOCA key: ......ETA.THE.OUN plaintext: ......the.oun.ain shift by 5: ciphertext: WMPMMXXAEYHBRYOCA key: .....EQW..THE..OU plaintext: .....the..oun..og shift by 6: ciphertext: WMPMMXXAEYHBRYOCA key: ....TQT...THE...O plaintext: ....the...oun...m A shift of 4 can be seen to look good (both of the others have unlikely Qs) and so the revealed ciphertext: WMPMMXXAEYHBRYOCA key: ..LTM.ETA.THE.OUN plaintext: ..eta.the.oun.ain A lot can be worked with now. The keyword is probably 4 characters long ( m.eta.the.oun.ain Because the plaintext guesses have an effect on the key 4 characters to the left, feedback on correct and incorrect guesses is given. The gaps can quickly be filled in: meetatthefountain The ease of cryptanalysis is caused by the feedback from the relationship between plaintext and key. A three-character guess reveals six more characters (three on each side), which then reveal further characters, creating a cascade effect. That allows incorrect guesses to be ruled out quickly. See alsoNotes
References
External links
|
Portal di Ensiklopedia Dunia