Nach dem positiven Ergebnis der ersten Analysen wurden die Proben von einem Team unter Führung der Universität Uppsala einer phylogenetischen Analyse unterzogen, die eine Anzahl von hochkonservierterProtein-kodierenderGene zum Gegenstand hatte. Als Ergebnis schlug das Team im Jahr 2015 das neue Archaeenphylum „Lokiarchaeota“ für die aus der Metagenomik identifizierten Gensequenzen (Contigs) vor.[11]
Der Name ist ein Verweis auf den Schwarzen Raucher, von dem die erste Metagenomprobe stammte, und bezieht sich auf Loki, eine der vielschichtigsten und wandlungsfähigsten Gestalten des nordischen Pantheons.[12] Der mythologische Loki wurde beschrieben als „eine atemberaubend komplexe, verwirrende und ambivalente Figur, die Ursache unzähliger ungelöster wissenschaftlicher Kontroversen war“,[13]
ganz analog zur Rolle der Lokiarchaeota in den Debatten über den Ursprung der Eukaryoten.[11][14]
Weitere Proben von Lokis Schloss, dem Yellowstone-Nationalpark, der Aarhus-Bucht, einem Grundwasserleiter (Aquifer) in der Nähe des Colorado River, dem Radiata Pool in Neuseeland (Ngatamariki, bei der Stadt Taupō und dem gleichnamigen Supervulkan, Nordinsel),[16][17] Hydrothermalquellen in der Nähe der Taketomi-Insel, Japan, und der Mündung des White Oak River in den Vereinigten Staaten führten dazu, dass weitere verwandte Gruppen entdeckt wurden, Odinarchaeota und Heimdallarchaeota,[4] und entsprechend der Namenskonvention nach Odin bzw. Heimdall benannt wurden.
Das Superphylum, das diese Mikroben enthält, bekam dann konsequenterweise den Namen „Asgard“, nach dem Wohnort der Götter in der nordischen Mythologie.[4]
Eine vergleichende Analyse von 162 Asgard-Genomen durch Liu et al. erweiterte im Jahr 2021 die phylogenetische Vielfalt dieser Supergruppe erheblich und führte zum Vorschlag von sechs zusätzlichen Phyla, einschließlich einer basalen Klade, die vorläufig Wukongarchaeota genannt wird. In mehreren dieser Phyla wurden weitere Homologe von Proteinen entdeckt, die für Eukaryoten charakteristisch sind. Die deutet auf eine dynamische Evolution durch horizontalen Gentransfer, Genverlust und -verdopplung und sogar Cross-Domain-Shuffling hin. Die Studie erlaubte jedoch noch nicht, zwischen den beiden möglichen Positionen des letzten gemeinsamen Vorfahren der Eukaryoten (LECA) zu entscheiden: entweder einer Schwesterklade der Heimdallarchaeota-Wukongarchaeota-Klade innerhalb von Asgard (wie im Kladogramm unten) oder einer Schwesterklade von Asgard selbst (innerhalb der Archaea).[18]
Im Jahr 2023 kamen Laura Eme, Daniel Tamarit et al. aufgrund weiterer derartiger Analysen zum Schluss, dass die Eukaryoten ihren Ursprung tief in der Asgard-Gruppe haben. Sie identifizierten als Schwestergruppe der Eukaryota dabei die Ordnung Hodarchaeales innerhalb der von ihnen als Klasse aufgefassten Heimdallarchaeia.[19]
Asgard-Archaeen haben ein reguliertes Aktin-Zytoskelett, und die von ihnen verwendeten Profiline und Gelsoline können mit eukaryotischen Aktinen interagieren.[21][22][23]
Sie scheinen auch Vesikel zu bilden, wie unter dem Kryoelektronenmikroskop (Kryo-EM) zu erkennen ist.
Einige scheinen S-Layer-Proteine mit einer PKD-Domäne (en. polycystic kidney disease domain) zu haben.[5]
Außerdem haben sie wie Eukaryoten in der größten Untereinheit der ribosomalenRNA, der LSU-rRNA (large subunit of ribosomal RNA), eine dreifache Erweiterung ES39 (expansion segment 39).[24][25]
Die Vielfalt an CRISPR-Cas-verwandten Systemen ist ein spezielles Merkmal der Asgard-Archaeen, das bei Eukaryoten nicht vorkommt.[26]
Stoffwechsel
Stoffwechselwege der Asgard-Archaeen für einige der Phyla[27]
Stoffwechselwege von Asgard-Archaeen, je nach Umgebung[27]
Im Jahr 2017 wurde entdeckt, dass die Vertreter des vorgeschlagenen Phylums HeimdallarchaeotaN-terminale Core-Histon-Arme (corehistone tails) haben, ein Merkmal, von dem man zuvor annahm, dass es ausschließlich bei Eukaryoten vorkommt. Bei zwei weiteren Archaeen-Phyla, die nicht Asgard angehören, wurde 2018 ebenfalls dieses Merkmal gefunden, und zwar in „Huberarchaeota“ (DPANN) und „Bathyarchaeota“ (TACK).[28]
Im Januar 2020 fanden Wissenschaftler Candidatus Prometheoarchaeum syntrophicum, ein Mitglied der Lokiarchaeota, der eine Syntrophie mit zwei Bakterienarten eingeht. Dieser Befund zeigt, dass Asgard-Archaeen zu komplexen Syntrophien in der Lage sind, eine Voraussetzung für die von der Eozyten-Hypothese behauptete Entwicklung von den Archaeen hin zu komplexen eukaryotischen Mikroorganismen, wie sie vor etwa zwei Milliarden Jahren durch Symbiogenese entstanden sind.[29][5][A. 2]
Bedeutung in der Evolution
Versklavung des Cosymbionten
Promethoarchaeum verbindet sich unter sauerstoffarmen (anaeroben) Bedingungen mit einem Alphaproteobakterium (beispielsweise Halodesulfovibrio), wobei die von Promethoarchaeum durch Hydrolyse von Aminosäuren und Peptiden freigesetzten H+-Ionen (Protonen oder Protien) vom Alphaproteobakterium zur Synthese energiereicher Verbindungen genutzt werden, die dann wieder vom Lokiarchaeon genutzt werden. Dabei entsteht aus dem H+-Ion (= Protium) von Promethoarchaeum und dem Hydrogensulfid HS- von HalodesulfovibrioSchwefelwasserstoff H2S.
Ähnlich muss dann unter sauerstoffreicheren (aeroberen) Bedingungen ein Asgardarchaeon Protonen an ein Alphaproteobacterium abgegeben haben, wobei aus dem Protium H+ des Asgardarchaeon und dem Hydrogenoxid HO- (= Hydroxidion) des Alphaproteobakterium Wasser H2O entstand, ähnlich wie dies auch heutzutage noch zwischen Zellplasma und Mitochondrien, genauer gesagt zwischen Intermembranraum und Innenraum der Mitochondrien, geschieht.
Nach der Umschling, Umhüll, Versklav Hypothese (engl. Entangle, Engulf, Enslave Hypothesis E3) nahmen Asgardarchaeoten zunächst (1.) Kontakt mit dem Symbionten auf, (2.) Umschlangen ihn, um den Kontakt zu sichern, (3.) Umhüllten ihn dann, um die Kontaktfläche zu vergrößern, (4.) verschlangen ihn anschließend, um ihn zu versklaven und sich (5.) zuletzt seine Gene allmählich einzuverleiben, sprich vom Symbionten ins Zellplasma zu transportieren. Auf diese Weise entstanden so allmählich die Mitochondrien, die der Zelle als Kraftwerke dienen. Einige Proteine der Mitochondrien werden auch heute noch auf mitochondrialen Plasmiden mtDNA gespeichert und von mitochondrialen Ribosomen im hergestellt.
Als die Nachfahren dieser Archaeen dann zu einem Zellkern kamen, wurden diese Gene dann in den Zellkern transportiert. Archaeoten selber besitzen keinen Zellkern.
Die phylogenetischen Beziehungen innerhalb der Asgard-Supergruppe sind noch in der Diskussion.
Die „Heimdallarchaeota“ (und ggf. ihnen nahestehende Gruppen) gelten als die am tiefsten verzweigten Asgard-Archaea.[5]
Die Eukaryoten können Schwesterklade Asgard-Archae als ganzes oder der Heimdallarchaeota bzw. der nahe verwandten Idunnarchaeota sein.[34][35]
Ein bevorzugtes Szenario ist die Syntrophie, bei der ein Organismus auf die Ernährung des anderen angewiesen ist.
In diesem Fall könnte die Syntrophie darauf zurückzuführen sein, dass die Asgard-Archaea in eine unbekannte Bakterienart inkorporiert wurden und sich zum Zellkern entwickelten. Ein α-Proteobakterium wurde inkorporiert und entwickelte sich so zum Mitochondrium.[34]
Die verwandtschaftlichen Verhältnisse der Mitglieder sind ungefähr wie folgt:[6][7][18][35]
Die Asgard-Archaeen zerfallen danach in zwei Kladen (um die „Lokiarchaeota“ und um die „Heimdallarchaeota“). Nach Caceres (2019) sollten sich noch die Idunnarchaeota zur Klade aus Heimdall- und Kariarchaeota hinzugesellen.
Dieser phylogenetische Baum spiegelt die Erkenntnis wider, dass die DNA rezenter (heutiger) Asgard-Archaeen enger mit der DNA in den eukaryotischen Zellkernen verwandt ist als mit der DNA anderer Archaeen.[33]
„Freyrarchaeota“ Xieet al. 2022 mit Ordnung „Ca. Freyrarchaeales“ (in Klasse „Ca. Freyrarchaeia“) und darin die Spezies „Ca. Freyrarchaeum guaymaensis“" Xie et al. 2022 (Fundort: Guaymas-Becken)[56][57] ⇒ Freyr
„Njordarchaeota“ Xieet al. 2022 mit Ordnung „Ca. Njordarchaeales“ (in Klasse „Ca. Njordarchaeia“) und darin die Spezies „Ca. Njordarchaeum guaymaensis“" Xie et al. 2022 (Fundort: Guaymas-Becken; möglicherweise die nächsten Verwandten der Eukaryoten)[56][58] ⇒ Njörðr
Die Gruppe „Uncultured Archaeal Phylum 3 (UAP3/AAG)“ Parkset al. 2017[62] mit „Ancient Archaeal Group (AAG)“ Takai & Horikoshi 1999[63][64][65] beinhaltet (ursprünglich) nur eine vorgeschlagene Spezies „Archaeon UBA460“ (Fundort: Meeressediment vor Costa Rica).[66] Zwar ist diese Spezies in der NCBI-Taxonomie keiner bestimmten Archaeengruppe zugeordnet (Stand 3. Januar 2023),[67] in der Genome Taxonomy Database (GTDB) aber trägt diese Spezies die Bezeichnung UBA460 sp002505645 und ist den Heimdallarchaeia (syn. Heimdallarchaeota, s. u.) zugeordnet.[68] „Uncultured Archaeal Phylum 3 (UAP3/AAG)“ ist daher die frühere provisorische Bezeichnung für die Heimdallarchaeen.
Nach Xie et al. (2022) sollten die Sigynarchaeota Mitglied der durch Helarchaeota und Lokiarchaeota definierten Klade zu sein, das sie näher mit den Lokiarchaeota als den Helarchaeota verwandt erscheinen. Die Njordarchaeota stehen wie die Wukongarchaeota den Heimdallarchaeota nahe und gehören daher in dieselbe große Asgard-Klade.[56]
Nach Farag et al. (2021) scheinen die „Sifarchaeota“ am nächsten mit den „Thorarchaeota“ verwandt zu sein. Die „Thorarchaeota“ sind bei diesen Autoren (mit den „Sifarchaeota“) aber im Asgard-Zweig der „Heimdallarchaeota“ angesiedelt, und nicht bei den Lokiarchaeota.[60]
In beiden Fällen lässt sich die Asgard-Supergruppe (so wie im Kladogramm) im engeren Sinn auffassen – dann ist diese möglicherweise paraphyletisch, da die Eukaryoten von ihrem letzten gemeinsamen Vorfahren (last common ancestor, LCA) (und den α─Proteobacteria) abstammen. Alternativ fasst man diese Gruppen im weiteren Sinn auf – dann sind die Eukaryoten ebenfalls (sehr weit entwickelte) Asgard-Mitglieder.
Diese Bezeichnung umfasst explizit alle Asgard-Archaeen zusammen mit den Eukaryoten.
Die Problematik setzt sich unter dieser Annahme in den höheren taxonomischen Rängen fort, bis hin zur Domäne.
Man kann die Bezeichnung Archaea (Archaeen) im weiten Sinn verstehen (inklusive Eukaryoten), dann wären diese monophyletisch. Es gäbe nur zwei Domänen: neben den so erweiterten Archaeen nur noch die Bacteria (Bakterien). Oder man versteht den Begriff Archaeen im engen Sinn und behält den bisherigen Sprachgebrauch bei, dann ist diese Gruppe paraphyletisch. Als taxonomischer Oberbegriff, der Archaeen und Eukaryoten umfasst, wurde 2020 von Cavalier-Smith und Chao die Bezeichnung „Neomura“ vorgeschlagen, dies wäre dann eine Schwestergruppe der Bacteria.[70][A. 3]
Alternative Bezeichnungsschemata
Der taxonomische Rang der Asgard-Klade und ihrer Teilgruppen ist derzeit (2019/2021) noch in Diskussion.[35] Je nach Rang tragen die bezeichneten Taxa dann Namen mit je nach Autor unterschiedlichen Endungen. Ein Beispiel die Synonyme:
„Asgardarchaeota“ Violette Da Cunhaet al. 2017
„Asgardaeota“ Whitman 2018
Entsprechend den Namenssuffixen werden die Asgard-Archaeen dabei im Rang eines Phylums gesehen.
Sun et al. (2021) und die Genome Taxonomy Database (GTDB) sehen die oben als Mitgliedsphyla bezeichneten Gruppen dann eher als Klassen, was sich in der Endung „-archaia“ statt „-archaeota“ niederschlägt. So sind zum Beispiel Synonyme:
„Sipharchaeia“
„Sipharchaeota“
In dieser Notation würde der Stammbaum der Eukaryomorpha etwa so aussehen:[72][1]
Sonderfälle sind folgende herkömmlich als Phyla bezeichneten Kladen:[1]
Helarchaeota und Lokiarchaeota, die hier als Ordnungen mit den Bezeichnungen Helarchaeales bzw. Lokiarchaeales[73][74]/CR-4 (provisorischer Name) aufgespannt wird,[A. 5] die gemeinsam die Klasse Lokiarchaeia bilden, der nach Xie et al. (2021) auch die Sigynarchaeota (als Sigynarchaeales) zugeordnet werden.[56][A. 4]
Sifarchaeota und Borrarchaeota, die hier ebenfalls als Ordnungen Sifarchaeales und Borrarchaeales gelten und gemeinsam die Klasse Sifarchaeia bilden.
Außerdem wird eine weitere von den Autoren vorgeschlagene Asgard-Subklade als Klasse aufgeführt:
Zwei weitere von diesen Autoren in Sediment-Proben des Lake Cootharaba[76][77] (Sunshine Coast, Australien)[72] gefundene bzw. vorhergesagte Metagenomik-Isolate, LC30[78][79] und LC20,[80][81] werden in der GTDB in einer Spezies zusammengefasst mit der provisorischen Bezeichnung LC30 sp019058495 und Referenzstamm LC30. Diese Spezies ist kein Mitglied einer der oben genannten Asgard-Gruppen, sondern wird einer eigenen weiteren Klasse zugeordnet:
In der 2023 veröffentlichten Studie von Laura Eme, Daniel Tamarit et al. plädieren die Autoren dafür, die Asgard-Gruppe im weiten Sinn aufzufassen, einschließlich der tief in dieser Gruppe wurzelnden Eukaryoten. Nach diesen Autoren sieht der phylogenetische Baum etwa wie folgt aus:[19]
Die hier als Ordnung aufgefassten Gerdarchaeales (ursprünglich und in der NCBI-Taxonomie als Phylum Gerdarchaeota)[82][38] umfassen eine Spezies Ca. Gerdarchaeota archaeon, u. a. mit den MAGs FT2_001,[A. 6] MP5_2_2012 und MP5_1_791[83] alias JABLTI01 sp016839405, JABLTI01 sp016840905 respektive JABLTI01 sp016840945.[84] Die GTDB ordnet der Spezies JABLTI01 insbesondere noch das MAG Asgard group archaeon isolate HMA_bin2.83 (Genbank-Zugriffsnr. JABLTI010000000) als Spezies JABLTI01 sp013166835 zu,[85][84] daher ist die GTDB-Ordnung JABLTI01 ein Synonym für Gerdarchaeales.
Laura Eme, Daniel Tamarit et&al. (2023) sehen die Familie Heimdallarchaeaceae mit der Gattung Ca. Heimdallarchaeum als Synonym der GTDB-Familie UBA460; zusammen mit der Familie Kariarchaeaceae sehen die Autoren diese als Mitglied der Ordnung Heimdallarchaeales, die ihrerseits ein Synonym zur GTDB-Ordnung UBA460 (und der NCBI-Ordnung Kariarchaeales) ist.[38][19]
Als Schwesterklade der Eukaryoten wurde von diesen Autoren die Asgard-Ordnung „Hodarcheales“[19] mit Ca. Hodarchaeum mangrovi (Referenzstamm FT_5_011) identifiziert.[86][A. 6]
Als Kandidaten für die Proto-Miochondrien unter den α-Proteobacteria wurden früher die Rickettsiales gehandelt, neuerdings (seit 2023) werden die zwischenzeitlich gefundenen und mit den Rickettsiales weitläufig verwandten Iodidimonadales favorisiert.
Asgardviren
Die Viren der Asgard-Archaeen werden (nicht-taxonomisch) kurz als Asgardviren (en. Asgard viruses) klassifiziert. Bisher liegen nur Metagenmomdaten vor, insbesondere aus dem CRISPR/Cas-Abwehrsystem, das Genomsequenzen des Virus zwecks Erkennung umfasst.
Diese Asgardviren sind dsDNA-Viren, die gewisse Ähnlichkeiten sowohl zu anderen prokaryotischen dsDNA-Viren als auch zu eukaryotischen dsDNA-Viren zeigen; ein Umstand, der zur Abstammung der Eukaryoten aus dem Umfeld der Asgard-Archaeen (unter Einbeziehung eines endosymbiotischen Bakteriums) passt – ggf. unter Mithilfe von Viren (siehe Eukaryogenese, Eozyten-Hypothese).
Im April 2023 hat das ICTV die ersten Vertreter von Asgardviren offiziell bestätigt.
Für ihre Gesamtheit kann eine vorläufige Klassifizierung nach Wirten, Morphologie und Habitat erfolgen:[88]
↑Die Eozyten-Hypothese war in den 1980er Jahren – vor Entdeckung der ersten Asgard-Archaeen – aufgrund gewisser Übereinstimmungen der Crenarchaeota mit den Eukaryoten entwickelt worden. Diese gehören wir die Asgard-Archaeen den Proteoarchaeota an; „Eozyten“ ist eine veraltete Bezeichnung für die Crenarchaeota bzw. sensu lato ein Synonym für die Proteoarchaeota.
↑Der Begriff „Neomura“ wurde von Cavalier-Smith bereits 2002 vorgeschlagen, damals im Rahmen eines zur Eozyten-Hypothese alternativen Szenarios. Inzwischen räumt der Autor aufgrund der neuen Ergebnisse aber auch die Möglichkeit einer Abstammung der Eukaryoten aus einer Gruppe der Archaeen ein. Die Bezeichnung „Neomura“ als Oberbegriff für Archaeen s. s. und Bakterien bleibt davon aber weitgehend unberührt: Neomura Thomas Cavalier-Smith (2002).[71]
↑ abc
Die Gattung Sigynarchaeum ist derzeit in der GTDB noch nicht erfasst (Stand 10. Januar 2023). Das von Xie et al. (2022) entsprechend der herkömmlichen Taxonomie postulierte Phylum Sigynarchaeota ist Mitglied der Lokiarcheota-Helarchaeota-Klade (s. o.). In der GTDB ist diese Klade die Klasse Lokiarchaeia, ihre Mitglieder sind Ordnungen. Es ist daher in der GTDB-Taxonomie die von diesen Autoren vorgeschlagene Ordnung Sigynarchaeiales angegeben.
↑CR-4 ist in der GTDB die Ordnung um die Gattung Prometheoarchaeum, Lokiarchaeales die nach einigen Autoren die Ordnung um die Gattung Lokiarchaeum (vermutlich Synonyme)
Pedro Leão, Mary E. Little, Kathryn E. Appler, Daphne Sahaya, Emily Aguilar-Pine, Kathryn Currie, Ilya J. Finkelstein, Valerie De Anda, Brett J. Baker: Asgard archaea defense systems and their roles in the origin of eukaryotic immunity. In: Nature Communications, Band 15, Nr. 6386, 31. Juli 2024; doi:10.1038/s41467-024-50195-2 (englisch). Dazu:
↑ abcd
Katarzyna Zaremba-Niedzwiedzka, Eva F. Cáceres, Jimmy H. Saw, Disa Bäckström, Lina Juzokaite, Emmelien Vancaester, Kiley W. Seitz, Karthik Anantharaman, Piotr Starnawski, Kasper U. Kjeldsen, Matthew B. Stott, Takuro Nunoura, Jillian F. Banfield, Andreas Schramm, Brett J. Baker, Anja Spang, Thijs J. G. Ettema: Asgard archaea illuminate the origin of eukaryotic cellular complexity. In: Nature. 541. Jahrgang, 11. Januar 2017, ISSN1476-4687, S.353–358, doi:10.1038/nature21031, PMID 28077874, bibcode:2017Natur.541..353Z (englisch).PDF, ResearchGate (Volltext)
↑ ab
Tom A. Williams, Cymon J. Cox, Peter G. Foster, Gergely J. Szöllősi, T. Martin Embley: Phylogenomics provides robust support for a two-domains tree of life. In: Nature Ecology & Evolution. 4. Jahrgang, Nr.1, 9. Dezember 2019, ISSN2397-334X, S.138–147, doi:10.1038/s41559-019-1040-x, PMID 31819234, PMC 6942926 (freier Volltext) – (englisch).
↑
Steffen Leth Jørgensen, Bjarte Hannisdal, Anders Lanzen, Tamara Baumberger, Kristin Flesland, Rita Fonseca, Lise Øvreås, Ida H. Steen, Ingunn H. Thorseth, Rolf B. Pedersen, Christa Schleper: Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. In: PNAS. 109. Jahrgang, Nr.42, 5. September 2012, S.E2846–55, doi:10.1073/pnas.1207574109, PMID 23027979, PMC 3479504 (freier Volltext) – (englisch).
↑
Steffen Leth Jørgensen, Ingunn H. Thorseth, Rolf B. Pedersen, Tamara Baumberger, Christa Schleper: Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge. In: Frontiers in Microbiology. 4. Jahrgang, 4. Oktober 2013, S.299, doi:10.3389/fmicb.2013.00299, PMID 24109477, PMC 3790079 (freier Volltext) – (englisch, frontiersin.org).
↑
Stefanie von Schnurbein: The Function of Loki in Snorri Sturluson's "Edda". In: History of Religions. 40. Jahrgang, Nr.2, Oktober 2000, S.109–124, doi:10.1086/463618 (englisch).
↑
Anja Spang, Laura Eme, Jimmy H. Saw, Eva F. Caceres, Katarzyna Zaremba-Niedzwiedzka, Jonathan Lombard, Lionel Guy, Thijs J. G. Ettema, Antonis Rokas: Asgard archaea are the closest prokaryotic relatives of eukaryotes. In: PLOS Genetics. 14. Jahrgang, Nr.3, 18. März 2018, S.e1007080, doi:10.1371/journal.pgen.1007080, PMID 29596421, PMC 5875740 (freier Volltext) – (englisch).
↑ ab
Kiley W. Seitz, Cassandre S. Lazar, Kai-Uwe Hinrichs, Andreas P. Teske, Brett J. Baker: Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. In: The ISME Journal. 10. Jahrgang, Nr.7, 29. Januar 2016, ISSN1751-7370, S.1696–1705, doi:10.1038/ismej.2015.233, PMID 26824177, PMC 4918440 (freier Volltext) – (englisch).
↑ abcdefgh
Yang Liu, Kira S. Makarova, Wen-Cong Huang, Yuri I. Wolf, Anastasia Nikolskaya, Xinxu Zhang, Mingwei Cai, Cui-Jing Zhang, Wei Xu, Zhuhua Luo, Lei Cheng, Eugene V. Koonin, Meng Li: Expanded diversity of Asgard archaea and their relationships with eukaryotes. In: Nature, Band 593, 28. April 2021, S. 553–557; doi:10.1038/s41586-021-03494-3. Preprint: Expanding diversity of Asgard archaea and the elusive ancestry of eukaryotes. In: bioRχiv, 20. Oktober 2020, doi:10.1101/2020.10.19.343400, ResearchGate.
↑ abcde
Laura Eme, Daniel Tamarit, Eva F. Cáceres, Courtney W. Stairs, Valerie De Anda, Max E. Schön, Kiley W. Seitz, Nina Dombrowski, William H. Lewis, Felix Homa, Jimmy H. Saw, Jonathan Lombard, Takuro Nunoura, Wen-Jun Li, Zheng-Shuang Hua, Lin-Xing Chen, Jillian F. Banfield, Emily St. John, Anna-Louise Reysenbach, Matthew B. Stott, Andreas Schramm, Kasper U. Kjeldsen, Andreas P. Teske, Brett J. Baker, Thijs J. G. Ettema: Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. In: Nature, Band 618, S. 992–999; doi:10.1038/s41586-023-06186-2. Dazu:
↑
Caner Akıl, Linh T. Tran, Magali Orhant-Prioux, Yohendran Baskaran, Edward Manser, Laurent Blanchoin, Robert C. Robinson: Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. In: PNAS. 117. Jahrgang, Nr.33, 18. August 2020, S.19904–19913, doi:10.1073/pnas.2009167117, PMID 32747565 (englisch).
↑
Odd Nygård, Gunnar Alkemar, Sofia L. Larsson: Analysis of the secondary structure of expansion segment 39 in ribosomes from fungi, plants and mammals. In: J Mol Biol, Band 357, Nr. 3, 31. März 2006, S. 904–916; doi:10.1016/j.jmb.2006.01.043, PMID 16473366.
↑
Petar I. Penev, Sara Fakhretaha-Aval, Vaishnavi J. Patel, Jamie J. Cannone, Robin R. Gutell, Anton S. Petrov, Loren Dean Williams, Jennifer B. Glass: Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. In: Genome Biology and Evolution. 12. Jahrgang, Nr.10, 1. Oktober 2020, S.1694–1710, doi:10.1093/gbe/evaa170 (englisch).
↑
Kira S. Makarova, Yuri I. Wolf, Sergey A. Shmakov, Yang Liu, Meng Li, Eugene V. Koonin: Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. In: The CRISPR Journal Band 3, Nr. 3, 1. Juni 2020, S. 156–163; doi:10.1089/crispr.2020.0012, ISSN2573-1599, PMC 7307682 (freier Volltext).
↑ abcd
Fraser MacLeod, Gareth S. Kindler, Hon Lun Wong, Ray Chen, Brendan P. Burns: Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. In: AIMS Microbiology. 5. Jahrgang, Nr.1, 2019, ISSN2471-1888, S.48–61, doi:10.3934/microbiol.2019.1.48, PMID 31384702, PMC 6646929 (freier Volltext) – (englisch).
↑
Carl Zimmer: Under the Sea, a Missing Link in the Evolution of Complex Cells. In: The New York Times. 6. Mai 2015, ISSN0362-4331 (nytimes.com).
↑
Jonathan Lambert: Scientists glimpse oddball microbe that could help explain rise of complex life. In: Nature. Band572, 2019, S.294 (nature.com).
↑ ab
Daniel B. Mills, Richard A. Boyle, Stuart J. Daines, Erik A. Sperling, Davide Pisani, Philip C. J. Donoghue, Timothy M. Lenton: Eukaryogenesis and oxygen in Earth history. In: Nature Ecology & Evolution, 21. April 2022; doi:10.1038/s41559-022-01733-y. Dazu:
↑ abcdefg
Ruize Xie, Yinzhao Wang, Danyue Huang, Jialin Hou, Liuyang Li, Haining Hu, Xiaoxiao Zhao, Fengping Wang: Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. In: Science China Life Sciences, Band 65, S. 818–829, April 2022; doi:10.1007/s11427-021-1969-6, PMID 34378142, Epub 6. August 2021. Dazu:
↑
Alla L. Lapidus, Anton I. Korobeynikov: Metagenomic Data Assembly – The Way of Decoding Unknown Microorganisms. In: Front. Microbiol. Band 12, 23. März 2021, S. 653, ISSN1664-302X; doi:10.3389/fmicb.2021.613791.
↑
Nina Dombrowski, Tom A. Williams, Jiarui Sun, Benjamin J. Woodcroft, Jun-Hoe Lee, Bui Quang Minh, Christian Rinke, Anja Spang: Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution, in: Nature Communications, Band 11, Nr. 3939, 7. August 2020, doi:10.1038/s41467-020-17408-w.
↑
Donovan H. Parks, Christian Rinke, Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz, Gene W. Tyson: Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. In: Nature Microbiology, Band 2, S. 1533–1542, 11. September 2017; doi:10.1038/s41564-017-0012-7, mit Korrektur vom 12. Dezember 2017, doi:10.1038/s41564-017-0083-5. Siehe insbesondere Supplement Tabelle 14.
↑
Gregory P. Fournier, Anthony M. Poole: A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. In: Front. Microbiol. 9. Jahrgang, 2018, S.1896, doi:10.3389/fmicb.2018.01896, PMID 30158917, PMC 6104171 (freier Volltext) – (englisch).
↑Thomas Cavalier-Smith, Ema E-Yung Chao: Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria), in: Protoplasma Band 257, S. 621–753, 3. Januar 2020, doi:10.1007/s00709-019-01442-7.
↑ abc
Jiarui Sun, Paul N. Evans, Emma J. Gagen, Ben J. Woodcroft, Brian P. Hedlund, Tanja Woyke, Philip Hugenholtz: Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. In: Nature, ISME Commun. Band 1, Nr. 30, 28. Juni 2021; doi:10.1038/s43705-021-00032-0.
↑ abc
Charlotte D. Vavourakis, Maliheh Mehrshad, Cherel Balkema, Rutger van Hall, Adrian-Ştefan Andrei, Rohit Ghai, Dimitry Y. Sorokin, Gerard Muyzer: Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. In: BMC Biology, Band 17, Nr. 69, 22. August 2019; doi:10.1186/s12915-019-0688-7, PMID 31438955, PMC 6704655 (freier Volltext). Siehe Additional File 4 (xlsx).
↑ abc
Fabai Wu, Daan R. Speth, Alon Philosof, Antoine Crémière, Aditi Narayanan, Roman A. Barco, Stephanie A. Connon, Jan P. Amend, Igor A. Antoshechkin, Victoria J. Orphan: Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. In: Nature Microbiology, Band 7, S. 200–212, 13. Januar 2022; doi:10.1038/s41564-021-01039-y, PMID 35027677, PMC 8813620 (freier Volltext).
↑
Mingwei Cai, Yang Liu, Xiuran Yin, Zhichao Zhou, Michael W. Friedrich, Tim Richter-Heitmann, Rolf Nimzyk, Ajinkya Kulkarni, Xiaowen Wang, Wenjin Li, Jie Pan, Yuchun Yang, Ji-Dong Gu, Meng Li: Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. In: Science China Life Sciences, Band 63, 16. März 2020 mit Update (Ergänzung) vom 21. April 2022, S. 886–897; doi:10.1007/s11427-020-1679-1.
↑ ab
Tomas Alarcón-Schumacher, Susanne Erdmann: A trove of Asgard archaeal viruses. In: Nature Microbiology. Band 7, 27. Juni 2022, S. 931–932; doi:10.1038/s41564-022-01148-2. Dazu:
↑
Ian M. Rambo, Marguerite V. Langwig, Pedro Leão, Valerie De Anda. Brett J. Baker: Genomes of six viruses that infect Asgard archaea from deep-sea sediments. In: Nature Microbiology. S. 953–961, Juli 2022; doi:10.1038/s41564-022-01150-8, Volltext (E-Book), Epub 27. Juni 2022. Dazu:
↑
Daniel Tamarit, Eva F. Cáceres, Mart Krupovic, Reindert Nijland, Laura Eme, Nicholas P. Robinson, Thijs J. G. Ettema: A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. In: Nature Microbiology. Band 7, 27. Juni 2022; doi:10.1038/s41564-022-01122-y. Dazu: