Aromaten
Aromatische Verbindungen, kurz auch Aromaten, sind eine Stoffklasse in der organischen Chemie. Ihr Name stammt vom aromatischen Geruch der zuerst entdeckten Verbindungen dieser Stoffklasse. Aromatische Moleküle besitzen mindestens ein Ringsystem, das nach der Hückel-Regel in konjugierten Doppelbindungen, freien Elektronenpaaren oder unbesetzten p-Orbitalen eine Anzahl von 4n+2 (n=0,1,2,…) delokalisierten Elektronen enthält. Diese Delokalisierung führt zu einem besonderen Bindungssystem, in dem im Ring nicht zwischen Einzel- und Doppelbindungen unterschieden werden kann. In einfachen, symmetrischen Ringsystemen wie beim Benzol sind damit alle Bindungen identisch. In Strukturformeln werden zur Verdeutlichung alle mesomeren Grenzstrukturen dargestellt oder die Einfachbindungen mit einem (manchmal gestrichelten) Ring versehen, der die delokalisierten Elektronen symbolisiert. Aromaten sind im Vergleich zu aliphatischen, d. h. nichtaromatischen, Doppelbindungssystemen energieärmer und deshalb weniger reaktiv. Insbesondere neigen sie nicht zu Additionsreaktionen. AromatizitätskriterienHistorische Definitionen
Allerdings lassen sich die Aromaten nicht über den Geruch definieren, da bei hoher molarer Masse oder stark polaren Substituenten oft kein Geruch wahrnehmbar ist.
Diese Namensbestimmung, die eine experimentelle Unterscheidung erlaubt, war beispielsweise im 20. Jahrhundert gültig, schon bevor die Struktur- und Bindungsverhältnisse geklärt waren. Heute wird in der Regel eine allgemeinere Definition über die elektronische Struktur bevorzugt. Die angegebenen Eigenschaften – kurz: Substitution statt Addition – sind natürlich dennoch charakteristische und sehr wichtige Merkmale.
Definition der AromatenNotwendige, aber nicht hinreichende Voraussetzungen für einen Aromaten:
Gleichbedeutend und kürzer lautet diese Bedingung:
Ein Aromat liegt dann vor, wenn auch die folgenden Bedingungen erfüllt sind:
Die von Erich Hückel aufgestellte Hückel-Regel wird meist durch die Formel (4n + 2) π-Elektronen (n = 0,1,2,3…), delokalisiert über alle Ringatome des Systems, wiedergegeben. Cyclisch konjugierte π-Systeme mit 4n π-Elektronen (n = 1,2,3…) heißen Antiaromaten. Die Grundstruktur vieler aromatischer Verbindungen ist das Benzol C6H6. (Die Hückel-Regel ist hier mit n=1 erfüllt: Benzol besitzt 6 π-Elektronen.) Das Benzol wird daher als einer der einfachsten aromatischen Kohlenwasserstoffe angesehen – insbesondere da die besonderen Eigenschaften aromatischer Verbindungen am Benzol und dessen Derivaten entdeckt wurden. Benzol ist gegenüber einem hypothetischen (das heißt nicht herstellbaren) Cyclohexatrien mit lokalisierten Doppelbindungen stabiler und damit weniger reaktiv. Aromatische IonenDa laut Hückel-Regel auch ein planares, cyclisch konjugiertes System mit 2 π-Elektronen als Aromat gilt, enthalten auch Cyclopropenylium-Salze aromatische Kationen: Das Cyclopropenylium-Ion erfüllt die Hückel-Regel mit n = 0 und zählt somit sowohl bezüglich der Zahl der delokalisierten Elektronen als auch bezüglich der Ringgröße zu den kleinstmöglichen aromatischen Verbindungen. Ebenfalls aromatisch ist das negativ geladene Cyclopentadienyl-Anion, das in Metallocenen wie Ferrocen vorkommt: Wie beim Benzol ist hier n = 1. Reaktionen von AromatenAm wichtigsten sind Substitutionsreaktionen, beispielsweise
Einteilung der AromatenKriterien
Es gibt eine gewaltige Zahl (mehrere Millionen sind bekannt) verschiedener aromatischer Verbindungen. Sie können nach verschiedenen Kriterien in Gruppen eingeteilt werden:
Beispiele aromatischer VerbindungenKohlenwasserstoffeAromatische Kohlenwasserstoffe werden auch Arene genannt. Beispiele dafür sind:
Kohlenwasserstoffe mit mehreren Ringen werden polyzyklische aromatische Kohlenwasserstoffe (PAK) genannt, das sind zum Beispiel:
Annulene, also cyclische Kohlenwasserstoffe mit konjugierten Doppelbindungen, können Aromatizität aufweisen. Nach Benzol ist [14]-Annulen das kleinste aromatische Annulen, ebenfalls aromatisch sind Annulene mit 18 und 22 Kohlenstoffatomen.[2] Aromatische Ionen
Typische Stammverbindungen dieser Klasse sind mit 2π-Elektronen das Cyclopropenylium-Ion, mit 6π-Elektronen das Cyclopentadienyl-Anion, das Cycloheptatrienyl-Kation und das Pyrylium-Ion. Im Falle des Pyrylium-Ions steuert der Sauerstoff zwei Elektronen über eines der beiden freien Elektronenpaare zum delokalisierten π-System bei. Das zweite freie Elektronenpaar liegt in der Ringebene und trägt somit nicht zum delokalisierten π-System bei (analog zum freien Elektronenpaar am Stickstoff des Pyridins). Benzolderivate
Heteroaromaten
Halogenaromaten
Antiaromaten
Als Antiaromaten bezeichnet man Stoffe, welche die ersten drei Bedingungen eines Aromaten erfüllen (cyclisch, planar, konjugierte Doppelbindungen), statt 4n+2 π-Elektronen jedoch 4n π-Elektronen besitzen. Antiaromaten erfahren nach der Hückel-Näherung keine oder nur sehr geringe Stabilisierung durch die cyclische Delokalisation. Aufgrund der Hundschen Regel müssen zudem paarweise entartete Molekülorbitale mit jeweils einem Elektron besetzt werden. Gemäß der Näherung liegen die Antiaromaten somit als hochreaktive Triplettradikale vor. Der einfachste Antiaromat, Cyclobutadien, ist nur bei sehr tiefer Temperatur (≤ 20 K) in einer festen Matrix beständig. Tri-tert-butylcyclopentadien ist hingegen einige Stunden bei 20 °C beständig. Interessanterweise ist Cyclobutadien in der Organometallchemie als Ligand stabil, ein Beispiel ist der Komplex Cyclobutadien-eisentricarbonyl.[3] Cyclooctatetraen besitzt 8 π-Elektronen. Es liegt jedoch nicht planar vor, sodass die Doppelbindungen nicht konjugiert sind. Die Hückel-Regel kann also nicht angewandt werden. Damit ist 1,3,5,7-Cyclooctatetraen ein Nichtaromat. Antiaromaten sind eine Teilmenge der nichtaromatischen alicyclischen Verbindungen. Letztere schließen zusätzlich auch nichtkonjugierte Verbindungen ein. Möbius-AromatenDie 1964 von Edgar Heilbronner vorhergesagte Möbius-Aromatizität[4] setzt voraus, dass in einem cyclisch-konjugierten System die besetzten pπ-Orbitale als Möbiusband angeordnet sind, d. h. mit einer 180°-Drehung. Zusätzlich sind die π–Orbitale mit 4n Elektronen besetzt (wobei n hier eine natürliche Zahl ist). Möbius-Aromaten sind durch die Verdrehung chiral. Heilbronner zog nun den Schluss, dass Möbius-Systeme niemals niedriger in der Energie sein können als die entsprechenden Hückel-Pendants. Das Problem bei ihm war, dass er eine Drehung nur für die Berechnung der Möbius-Moleküle, aber nicht für die hückelschen, annahm. Ein Jahr später hatte Zimmerman das Problem genauer behandelt.[5][6] Ob ein 2003 von Rainer Herges synthetisiertes Molekül[7] wirklich einen Möbius-Aromaten darstellt oder nur die nötige Topologie besitzt, wird noch kontrovers diskutiert.[8] Aromaten in der NaturViele Verbindungen der Natur besitzen aromatische Strukturen. Allgegenwärtig sind in Proteinen die Aminosäuren wie Tyrosin, Tryptophan oder Phenylalanin. Die DNA oder RNA, die Träger der genetischen Informationen, enthalten die Nukleinbase Adenin als Teil des Nukleotids ATP. Pflanzenfarbstoffe wie die wasserlöslichen Flavonoide, der Gerüststoff Lignin des Holzes, Kofaktoren von Enzymen wie Pyridoxalphosphat oder Pterine sind nur einige weitere Beispiele. In den natürlichen weiblichen Sexualhormonen Estradiol, Estriol und Estron ist der Ring A des Steroidgerüstes aromatisch. Hingegen ist der Ring A bei den männlichen Sexualhormonen (Androgene) nicht aromatisch.[9] Die biochemische Synthese und der Abbau von Aromaten ist häufig durch spezielle Enzyme realisiert. Durch den Aromatenabbau werden von Mikroorganismen auch Aromaten der unbelebten Natur, wie Schadstoffe, Pestizide oder Abfälle der chemischen Industrie, in den Kohlenstoffkreislauf zurückgeführt. Siehe auchLiteratur
WeblinksWikibooks: Organische Chemie für Schüler/ Aromatische Kohlenwasserstoffe – Lern- und Lehrmaterialien
Einzelnachweise
|