Sòlid de Johnson![]() ![]() ![]() En geometria, un sòlid de Johnson és un políedre estrictament convex tal que totes les seves cares són polígons regulars però que no és ni un sòlid platònic, ni un sòlid arquimedià, ni un prisma ni un antiprisma. No cal que cada cara sigui un polígon idèntic, o que els mateixos polígons es trobin al voltant de cada vèrtex. Un exemple de sòlid de Johnson és la piràmide de base quadrada amb costats triangulars equilàters (J1); té una cara quadrada i quatre cares triangulars. Com que és un sòlid estrictament convex pel capbaix tres cares s'han de trobar a cada vèrtex i la suma dels seus angles ha de ser menor que 360 graus. Ja que tot polígon regular té angles superiors o iguals a 60 graus (cas del triangle equilàter és 60 graus i tots els altres és més), se'n dedueix que cinc cares el màxim que es poden trobar en un vèrtex qualsevol. La piràmide pentagonal (J₂) és un exemple que té un vèrtex de grau 5. Encara que no existeixi restricció evident perquè un polígon regular qualsevol pugui ser una cara d'un sòlid de Johnson, es troba que les cares dels sòlids de Johnson tenen sempre 3, 4, 5, 6, 8 o 10 costats. És a dir no hi ha cap sòlid de Jonson que tingui una cara que sigui un polígon ni de 7 ni de 9 ni de més de 10 costats. El 1966, Norman Johnson va publicar una llista que incloïa els 92 sòlids, i els va donar els seus noms i els seus nombres. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls anota Jxx on xx és el nombre donat per Johnson. Dels sòlids de Johnson, la girobicúpula quadrada allargada (J37) és l'únic que és de vèrtexs uniformes: incideixen quatre cares a cada vèrtex, i el seu arranjament és sempre el mateix: tres quadrats i un triangle. NomsEls noms es llisten davall i són força descriptius. Molts d'aquests sòlids es poden construir afegint piràmides, cúpules i rotondes sobre cares de sòlids platònics, sòlids arquimedians, de prismes o d'antiprismes.
Les tres últimes operacions - augment, disminució i gir - es poden executar més d'una vegada sobre un sòlid prou gran. S'afegeix bi- al nom de l'operació per indicar que s'ha executat dues vegades. (Un sòlid bigirat té dues de les seves cúpules que han experimentat una rotació). S'afegeix tri- per indicar que s'ha executat tres vegades. (Un sòlid tridisminuit té tres de les seves piràmides o cúpules eliminades). A vegades, bi- tot sol no és prou precís. S'ha de distingir entre un sòlid que té dues cares paral·leles alterades i un que té dues cares obliqües alterades. Quan les dues cares alterades són paral·leles, s'afegeix para- al nom de l'operació. (Un sòlid parabiaugmentat té dues cares paral·leles augmentades). Quan no ho són, s'afegeix meta- al nom de l'operació. (Un sòlid metabiaugmentat té dues cares obliqües augmentades). Llista i noms dels políedres de JohnsonA les taules es fan servir les següents abreviatures: V : nombre de vèrtexs, Prismatoides i rotondesEls poden classificar en:
Piràmides modificades i bipiràmidesEs poden classificar en:
Cúpules i rotondes modificadesEs poden classificar en:
Sòlids platònics modificats
Sòlids arquimedians modificatsS'obtenen a partir de:
Diversos
Referències
Enllaços externs
|
Portal di Ensiklopedia Dunia