বীজগণিতবীজগণিত (ইংৰাজী: Algebra) ইংৰাজী Algebra শব্দটো আহিছে আৰবী "আল-জেব্ৰ" শব্দৰ পৰা, যাৰ অৰ্থ হৈছে ভগ্ন অংশৰ পুনৰমিলন।[1] গণিতৰ এটি বৃহৎ শাখা হৈছে এই বীজগণিত। য'ত গাণিতিক সমীকৰণৰ অনিৰ্ধাৰিত সংখ্যাক প্ৰতীকৰ মাধ্যমেৰে উপস্থাপন কৰা হয়। বীজগণিতত পাটীগণিতৰ মৌলিক উপাদানসমূহ যেনে- যোগ, বিয়োগ, গুণ, ভাগ, ইত্যাদি প্ৰক্ৰিয়া প্ৰতীকৰ দ্বাৰা নিৰ্দিষ্ট সংখ্যা ব্যবহাৰ নকৰাকৈয়ে সমস্যা সমাধান কৰা যায়। বীজগণিতত অনেক সমস্যা সমাধানত বীজগাণিতিক সূত্ৰ ব্যৱহাৰ হয়। লগতে অনেক বীজগাণিতিক ৰাশি বিশ্লেষণ কৰি উৎপাদকৰ মাধ্যমেৰে উপস্থাপন কৰা হয়। অৰ্থাৎ, প্ৰক্ৰিয়া চিহ্ন আৰু সংখ্যানিৰ্দেশক অক্ষৰ প্ৰতীকৰ অৰ্থবোধক বিন্যাসকে বীজগাণিতিক ৰাশি বোলা হয়। দৈনন্দিন জীবনৰ বিভিন্ন গাণিতিক সমস্যাত বীজগণিতে যথেষ্ট সহায় কৰে। কোনো গাণিতিক সম্পৰ্কক সাধাৰণ সূত্ৰৰ আকাৰত পাটীগণিতৰ সহায়ত প্ৰকাশ কৰা সম্ভৱ নহয়। পাটিগণিতৰ বিপৰীতে বীজগণিতত প্ৰতীকৰ সাহায়ত কোনো গাণিতিক সম্পৰ্ক এটি সাধাৰণ বিবৃতি আকাৰত প্ৰকাশ কৰা সম্ভৱ। বীজগণিতীয় উপাদান সমূহধ্ৰুৱকধ্ৰৱক মানে হৈছে স্থিৰ। যাৰ কোনো পৰিৱৰ্তন নহয়। বীজগণিতত ধ্ৰুৱক মানে হৈছে সমীকৰণ এটাত থকা সাংখ্যিক মান সমূহ যাৰ কোনো পৰিৱৰ্তন নহয়। যেনে: ১,২,৩,৪... চলকচলক হৈছে সমীকৰণ এটাত থকা প্ৰতীকী মান সমূহ, যাৰ বাস্তৱ মান যিকোনো হ'ব পাৰে। ই ধ্ৰুৱকৰ দৰে স্থিৰ নহয়। এই চলক সমূহক বুজাবলৈ সদাৰণতে ইংৰাজী আখৰ x,y,z,m,n ইত্যাদি বোৰ ব্যৱহাৰ কৰা হয়।[2] সমীকৰণসমীকৰণ মানে হৈছে চলক, ধ্ৰুৱক আৰু কিছুমান গাণিতিক চিহ্নৰ দ্বাৰা গঠিত এক বিবৃতি য'ত দুটা গাণিতিক বিন্যাসৰ মান সমান আৰু বিন্যাস দুটাক '=' চিহ্নৰ দ্বাৰা সমান বুলি দেখুৱা হয়। যেনেঃ 2x+3=15।
বীজগণিতীয় ৰাশি আৰু পদএটা ৰাশি গঠনৰ পূৰ্বে এটা বা অধিক উৎপাদকৰ দ্বাৰা একো একোটা পদ গঠন কৰা হয় আৰু এই পদ সমূহক বিভিন্ন গাণিতিক চিহ্ন যেনে যোগ, বিয়োগ, পূৰণ, হৰণ ইত্যাদিৰ দ্বাৰা যুক্ত কৰি একোটা ৰাশি তৈয়াৰ কৰা হয়। উদাহৰণ স্বৰূপে এটা বীজগণিতীয় ৰাশি হৈছে 4x-3xy, ইয়াত 4x আৰু -3xy হৈছে দুটা পদ আৰু 4,x,-3,y ইত্যাদিবোৰ উৎপাদক। পদএক বা ততোধিক ধ্ৰুৱক বা চলক পূৰণ অথবা হৰণৰ দ্বাৰা যুক্ত হৈ থাকিলে একোটা পদ সৃষ্টি হয়। উদাহৰণ স্বৰূপে: 7y, 6, -9, 2/3s, -5x ইত্যাদি। বীজগণিতীয় ৰাশিৰ প্ৰকাৰএকপদ ৰাশিযিবিলাক বীজগণিতীয় ৰাশিত মাত্ৰ এটাই পদ থাকে তেনেবিলাকক একপদ ৰাশি(monomial বা monomial expression)বুলি কোৱা হয়। উদাহৰণ স্বৰূপে 5xy, -3xy, -7, x ইত্যাদি একপদ ৰাশি। দ্বিপদ ৰাশিদুটা ভিন্ন পদ থকা ৰাশিক দ্বিপদ ৰাশি(binomial expression) বুলি কোৱা হয়। যেনেঃ xy-7, 3xy+2, p-q আদিবোৰ দ্বিপদ বীজগণিতীয় ৰাশি। ত্ৰিপদ ৰাশিএটা বীজগণিতীয় ৰাশিত যদি তিনিটা পদ থাকে তেন্তে সেইটোক ত্ৰিপদ ৰাশি (trinomial expression) বুলি কোৱা হয়। যেনেঃ a+b-1, 6xy-y+3 ইত্যাদিবোৰ ত্ৰিপদ ৰাশি। বহুপদ ৰাশিএটা বা অধিক পদ যুক্ত বীজগণিতীয় ৰাশিবোৰকে বহুপদ ৰাশি(polynomial expression) বুলি কোৱা হয়। ইয়াত এটা, দুটা, তিনিটা বা তাতকৈ অধিক পদ থাকিব পাৰে। যেনেঃ x+y+2-z, 2x-2y, 5a+3b ইত্যাদিবোৰ বহুপদ ৰাশি। সদৃশ পদ আৰু অসদৃশ পদযেতিয়া কোনো এটা পদৰ বীজগণিতীয় উৎপাদক বোৰ একে বৈশিষ্ট্যৰ হয় তেতিয়া তেনেবোৰ পদক সদৃশ পদ বুলি কোৱা হ'ব। আনহাতে যিবোৰ পদৰ মাজত বৈশিষ্ট্যৰ সাদৃশ্যতা নাই তেনেবোৰ পদকেই অসদৃশ পদ বুলি কোৱা হ'য়। উদাহৰণ স্বৰূপে এটা ৰাশি 2xy-3x+5xy-4ৰ 2xy আৰু 5xy পদ দুটাৰ বীজগণিতীয় উৎপাদকবোৰ হৈছে- 2, x, y আৰু 5, x, y। এই বীজগণিতীয় উৎপাদকবোৰ একে বৈশিষ্ট্যৰ, গতিকে উক্ত পদ দুটা হ'ব সদৃশ পদ। আনহাতে 3x আৰু 2xy পদ দুটাৰ বীজগণিতীয় উৎপাদক বোৰ বেলেগ বেলেগ। গতিকে ইহঁত অসদৃশ পদ। সহগএটা ৰাশিৰ পদ সমূহৰ সাংখ্যিক উৎপাদকটোকে পদটোৰ সাংখ্যিক সহগ বুলি কোৱা হয়। উদাহৰণ স্বৰূপে 5xy পদটোৰ সহগ হৈছে 5। একেদৰে -x ৰ সহগ হৈছে -1। অৱশ্যে কেতিয়াবা সহগ বুলিলে কেৱল সাংখ্যিক উৎপাদকটোকেই নুবুজাবও পাৰে। এইক্ষেত্ৰত যদি এটা পদ 10xyত, y ৰ সহগ কি বুলি সোধা হয়, তেন্তে উত্তৰ হ'ব 10x। একেদৰে 10x ৰ সহগ হ'ব y।
বীজগণিতীয় ৰাশিৰ যোগ আৰু বিয়োগ প্ৰক্ৰিয়াএযোৰ বা অধিক বীজগণিতীয় ৰাশিৰ যোগ প্ৰক্ৰিয়াত প্ৰথমে সদৃশ পদৰযোৰ সমূহ একত্ৰিত কৰা হয় আৰু পদ সমূহৰ গাণিতিক সহগ সমূহ যোগ কৰা হয়। এই যোগফলটো পূৰ্বৰ সদৃশ পদ সমূহৰ সৈতে সদৃশ হ'ব। আনহাতে বিসদৃশ পদ সমূহ কোনো পৰিৱৰ্তন নোহোৱাকৈয়ে ৰখা হয়। এই যোগ প্ৰক্ৰিয়াটো দুটা পদ্ধতিৰে কৰা হয়- ক)অনুভূমিক পদ্ধতি (Horizontal method) আৰু খ)স্তম্ভ-লেখন পদ্ধতি (Column method)। এই পদ্ধতি ব্যৱহাৰ কৰি বীজগণিতীয় ৰাশিৰ যোগ প্ৰক্ৰিয়া দেখুওৱা হ'ল- অনুভূমিক পদ্ধতি: দুটা ৰাশি ক্ৰমে 5x² + 7y - 8, আৰু 6 – 5y + 4x² ৰ যোগফল হ'ব- (5x² + 7y - 8)+(6-5y + 4x²) =(5x²+4x²)+(7y-5y)-(8+6) =9x²+2y-2 স্তম্ভ-লেখন পদ্ধতি: তিনিটা ৰাশি ক্ৰমে 8x² - 5xy + 3y², 2xy - 6y² + 3x² আৰু y² + xy - 6x² ৰ যোগফল হ'ব- 8x² - 5xy + 3y² 3x² - 2xy - 6y² -6x² + xy + y² _____________ 5x² - 2xy - 2y² _____________ = 5x² - 2xy - 2y² বীজগণিতীয় ৰাশিৰ বিয়োগৰ ক্ষেত্ৰটো এই একেই পদ্ধতি অৱলম্বন কৰা হয়। বীজগণিতীয় বিধিবীজগণিতয় ৰাশিৰ যোগ-বিয়োগ, পূৰণ-হৰণৰ সাধাৰণ নিয়ম আৰু বিধি সমূহৰ হ'ল-
a + b = b + a a × b = b × a উদাহৰণ:
2 + 3 = 3 + 2
x 2 + x = x + x 2 ২.সহযোগ বিধি: (a + b) + c = a + (b + c) (a × b) × c = a × (b × c) উদাহৰণ:
(2 + 3) + 6 = 2 + (3 + 6) (7 × 3) × 10 = 7 × (3 × 10)
(x 3 + 2 x) + x = x 3 + (2 x + x 3) (x 2 × 5 x) × x = x 2 × (5 x × x) ৩.বিতৰণ বিধি: a × (b + c) = a × b + a × c (a + b) × c = a × c + b × c উদাহৰণ:
2 × (2 + 8) = 2 × 2 + 2 × 8 (2 + 8) × 10 = 2 × 10 + 8 × 10
x × (x 4 + x) = x × x 4 + x × x (x 4 + x) × x 2 = x 4 × x 2 + x × x 2 ৪.শূন্যৰ বাদে এটা বাস্তৱ সংখ্যাৰ প্ৰতিলোম: যদি a এটা বাস্তৱ সংখ্যা(য'ত a ৰ মান শূন্য নহয়) তেন্তে তাৰ প্ৰতিলোম হ'ব- 1/a আৰু a × (1/a) = 1 ৫.যোগাত্মক বিপৰীত: যিকোনো এটা সংখ্যা a ৰ যোগাত্মক বিপৰীত হ'ব -a আৰু -a ৰ যোগাত্মক বিপৰীত a। a + (- a) = 0 (-6) = 6 আৰু - 6 + (6) = 0 ৬.যোগাত্মক আৰু গুণাত্মক পৰিচয়: a + 0 = 0 + a = a a × 1 = 1 × a = a 5 + 0 = 0 + 5 = 5 6 × 1 = 1 × 6 = 6[4] বীজগণিতীয় সূত্ৰবীজগণিতৰ জগত খনত সাধাৰণতে ব্যৱহাৰ হৈ থকা বিভিন্ন সূত্ৰসমূহ হৈছে-
বীজগণিতীয় শাখা আৰু ক্ষেত্ৰবৰ্তমান বীজগণিত কেৱল সমীকৰণতে সীমাবদ্ধ হৈ থকা নাই, ইয়াত বহুপদ, অসীম গুণফল, অনুক্ৰম,ৰূপ, সৰণিক আদি বিভিন্ন বিষয়ৰ অন্তৰ্ভুক্তি হৈছে। বীজগণিতক নিম্নলিখিত শ্ৰেণী সমূহত ভাগ কৰিব পৰা যায়- প্ৰাৰম্ভিক বীজগণিত (Elementary algebra)ই বীজগণিতৰ সৰল স্তৰ। বিদ্যালয়ত ছাত্ৰ-ছাত্ৰীক প্ৰাৰম্ভিক স্তৰৰ বীজগণিত শিকাবৰ বাবে এই অংশটো 'বীজগণিত' শীৰ্ষকৰে পৰিচয় কৰোৱা হয়। এই স্তৰত সমীকৰণ, চলক, ধ্ৰুৱক এই উপাদান সমূহৰে ছাত্ৰ-ছাত্ৰীক চিনাকি কৰাই দিয়া হয়। বিমূৰ্ত বীজগণিত (Abstract algebra)এই শ্ৰেণীটোক আধুনিক বীজগণিত বুলিও জনা যায়। ইয়াৰ অন্তৰ্গত গ্ৰুপচ্, ৰিংচ্, ফিল্ডচ্ ইত্যাদিবোৰ এই শ্ৰেণীত আলোচনা কৰা হয়। ৰৈখিক বীজগণিত (linear algebra)এই শ্ৰেণীত ৰৈখিক সমীকৰণ সমূহ যেনে: আৰু মেট্ৰিস্ক যেনে: , বা সদিশ ৰাশিৰ দ্বাৰা অধ্যয়ন কৰা হয়। এই ৰৈখিক বীজগণিত, গণিতৰ প্ৰায় সমকলো ক্ষেত্ৰৰে কেন্দ্ৰ স্বৰূপ। সৰ্বজনীন বীজগণিত (Universal algebra)ইয়াত সাধাৰণ বীজগণিতীয় গাঁথনি সমূহৰ ওপৰত স্বতন্ত্ৰ ভাৱে অধ্যয়ন কৰা হয়। ইয়াত কোনো উদাহৰণৰ সহায় লোৱা নহয়। বীজগণিতীয় সংখ্যা সিদ্ধান্ত (Algebraic number theory)ইয়াত বীজগণিতীয় পদ্ধতিৰ সহায়ত সংখ্যা সমূহৰ গুণাগুণ সম্পৰ্কে অধ্যয়ন কৰা হয়। বীজগণিতীয় জ্যামিতি (Algebraic geometry)এই ক্ষেত্ৰত বীজগণিতীয় জ্যামিতিক সমস্যা সমূহ বিমূৰ্ত বীজগণিতৰ সহায়ত সমাধান কৰা হয়। বীজগণিতীয় বিন্যাস (Algebraic combination)বিমূৰ্ত বীজগণিতীয় পদ্ধতিৰ সহায়ত বিন্যাসৰ বীজগণিতীয় সমস্যা সমূহৰ সমাধান কৰা হয়। ইতিহাসবীজগণিতৰ যি ক্ষেত্ৰত অনিৰ্ণিত সমীকৰণৰ অধ্যয়ন কৰা হয় সেই ক্ষেত্ৰৰ পুৰণি নাম 'কূট্টক'। হিন্দু গণিতজ্ঞ ব্ৰহ্মগুপ্তই ৬২৮ খ্ৰীষ্টাব্দতে এই বিজ্ঞানৰ নাম কূট্টক গণিত বুলি নামকৰণ কৰিছিল আৰু ইয়ে বীজগণিতৰ প্ৰাচীনতম নাম। ৮৬০ খ্ৰীষ্টাব্দত পৃথুদক স্বামীয়ে প্ৰথম বাৰলৈ ইয়াক 'বীজগণিত' নাম দিয়ে। ইয়াত 'বীজ'ৰ অৰ্থ হৈ মানে 'তত্ত্ব'। গতিকে বীজগণিত বুলিলে সেই বিজ্ঞানক বুজা যায় য'ত তত্ত্বৰ দ্বাৰা গণনা কৰা হয়। গাণিতত সকলো সংকেতৰ মান পৰিচিত। বীজগণিতত ব্যাপক ৰূপত সংকেত সমূহৰ ব্যৱহাৰ হয়। যাৰ মান প্ৰাথমিকভাৱে অজ্ঞাত হৈ থাকে। সেইহেতু, এই বিজ্ঞানৰ অন্যান্য দুটা প্ৰাচীন নাম হৈছে 'ব্যক্ত গণিত' আৰু 'অব্যক্ত বা অদৃশ্য গাণিত'। ইংৰাজীত বীজগণিতক 'algebra' বুলি কোৱা হয়। এই নাম আৰৱ দেশৰ পৰা অহা। ৮২৫ খ্ৰীষ্টাব্দত আৰৱ গণিতবিদ আল্ খোৱাৰিজমিয়ে 'আল-জব্ৰ-ৱাল-মুকবলা' নামৰ গণিতৰ এখনগ্ৰন্থ ৰচনা কৰিছিলে। আৰবি ভাষাৰ 'আল-জব্ৰ' তথা ফাৰ্চী ভাষাৰ 'মুকাবলা'ৰ অৰ্থ হৈছে সমীকৰণ। সম্ভৱ লেখকে আৰবি আৰু ফৰাচী ভাষাৰ 'সমীকৰণ'ৰ সমাৰ্থক নামদুটা যুক্ত কৰি 'আল-জব্ৰ-ৱাল-মুকাবলা' নামটো ৰাখিছিল। ভাৰতীয় অংকশাস্ত্ৰৰ ইতিহাসত ধ্ৰুপদী যুগক (Classical era, খ্ৰীষ্টাব্দ পঞ্চম শতিকাৰপৰা দ্বাদশ শতিকালৈ) এক উল্লেখযোগ্য সময় বোলো কোৱা হয়; প্ৰায়ভাগ বিখ্যাত ভাৰতীয় গণিতজ্ঞৰ ভিতৰত আৰ্যভট্ট(১ম), ব্ৰহ্মগুপ্ত, ভাস্কৰ(১ম), মহাবীৰ, আৰ্যভট্ট(২য়) আৰু ভাস্কৰাচাৰ্য বা ভাস্কৰ(২য়) আদি কেইজনমান উল্লেখযোগ্য গণিতজ্ঞৰ আৱিষ্কাৰৰ ভিতৰত শূন্য ৰ আৱিষ্কাৰেই আছিল এই সময়ছোৱাৰ অংকশাস্ত্ৰৰ এক অতুলনীয় অৱদান, আৰু ইয়াৰ আৱিষ্কাৰক আছিল আৰ্যভট্ট। তেওঁ এই চিহ্নটোৰ ব্যৱহাৰ কৰা নাছিল যদিও ফ্ৰান্সৰ গণিতজ্ঞ Georges Ifrah ৰ দাবী অনুসৰি আৰ্যভট্টৰ স্থানীয়মান পদ্ধতি (Place-value system)ত ৰিক্ত সহগ (Null co-efficient)ৰ সৈতে ১০ৰ সূচকবোৰ (Powers of ten)ৰ স্থান নিৰ্ণায়ক (Place holder) হিচাপে শূন্যৰ ধাৰণা অন্তৰ্নিহিত আছিল। আৰ্যভট্টৰ আন এক অৱদান হৈছে চাৰি দশমিক স্থানলৈ (৩.১৪১৬) π (পাই)ৰ মান নিৰ্ধাৰণ। তদুপৰি π যে অপৰিমেয় সংখ্যাৰ অন্তৰ্ভুক্ত সেয়াও আৰ্যভট্টই সূচনা কৰি থৈ যায়। ১২৩টা স্তৱকেৰে পৰিপূৰ্ণ ‘আৰ্যভটীয়’ গ্ৰন্থখনৰ গাণিতিক অংশটো পাটীগণিত (Arithmetic), বীজগণিত (Algebra), সমতলীয় ত্ৰিকোণামিতি (Plane trigonometry), গোলকাকাৰ ত্ৰিকোণামিতি (Spherical trigonometry) ৰে পৰিবেষ্টিত; য’ত অবিচ্ছিন্ন ভগ্নাংশ (Continued fractions), দ্বিঘাত সমীকৰণ (Quadratic equations), সূচকীয় শ্ৰেণীৰ যোগফল (Sums of power series) আৰু এখন sineৰ তালিকা (A table of sines) অন্তৰ্ভুক্ত হৈ আছে। তেওঁৰ এই তথ্যসমূহৰ পৰাই প্ৰথমে by=ax+c আৰু by=ax-c (a,b,c অখণ্ড সংখ্যা) ধৰণৰ সমীকৰণৰ অখণ্ড সমাধান কৰিব পৰা গৈছিল। তথ্য সংগ্ৰহ
|
Portal di Ensiklopedia Dunia