আৰ্যভট্টএই প্ৰবন্ধটো গণিতজ্ঞ জনৰ বিষয়ে। কৃত্ৰিম উপগ্ৰহটোৰ বাবে আৰ্যভট্ট (কৃত্ৰিম উপগ্ৰহ) চাওক।
আৰ্যভট্ট (দেৱনাগৰী: आर्यभट) (৪৭৬ – ৫৫০)[1][2] প্ৰাচীন ভাৰতৰ সকলোতকৈ বিখ্যাত গণিতজ্ঞসকলৰ মাজৰ এজন। ভাৰতৰ প্ৰথম কৃত্ৰিম উপগ্ৰহৰ নাম তেওঁৰ নামেৰে "আৰ্যভট্ট" ৰখা হয়। জন্মআৰ্যভট্টৰ কাৰ্যৰ দ্বাৰা তেওঁৰ জন্মচন সম্পৰ্কে সুস্পষ্ট তথ্য পোৱা যায় যদিও তেওঁৰ জন্মস্থান সম্বন্ধে সুবিশেষ কোনো তথ্য পোৱা নাযায়। আৰ্যভট্টৰ অন্যতম ভাষ্যকাৰ প্ৰথম ভাস্কৰৰ ভাষ্য অনুযায়ী তেওঁৰ জন্ম হৈছিল অশ্মকা নামৰ এখন ঠাইত। প্ৰাচীন বৌদ্ধ আৰু হিন্দু ৰীতিত এই ঠাইখনক নৰ্মদা আৰু গোদাবৰী নদীৰ মধ্যবৰ্তী স্থানত দক্ষিণ গুজৰাট আৰু উত্তৰ মহাৰাষ্ট্ৰৰ ওচৰৰ এখন ঠাই হিচাপে চিহ্নিত কৰা হয়।[3][4] উচ্চশিক্ষাকিছুমান তথ্যমতে জনা যায় যে তেওঁ উচ্চশিক্ষাৰ বাবে কুসুমপুৰালৈ গৈছিল। তেওঁ কুসুমপুৰাতেই বসবাস কৰিছিল,[5] তেওঁৰ ভাষ্যকাৰ প্ৰথম ভাস্কৰে এই স্থানক পাটলিপুত্ৰ নগৰী বুলি অভিহিত কৰিছিল।[3] তেওঁ কুসুমপুৰত আৰ্যভ নামে খ্যাত আছিল। তেওঁৰ কামৰ অধিকাংশই তেওঁ কৰিছিল নালন্দা বিশ্ববিদ্যালয়ত। ইয়াতেই তেওঁ উচ্চ শিক্ষা গ্ৰহণ কৰিছিল। শিক্ষাৰ শেষত তেওঁ এই বিশ্ববিদ্যালয়ত শিক্ষক হিচাপে যোগ দিয়ে। কোনো কোনোৰ মতে, নালন্দা বিশ্ববিদ্যালয়ৰ প্ৰধান হিচাপেও আৰ্যভট্টই দায়িত্ব পালন কৰিছিল।[3] প্ৰধান অৱদানপ্ৰাচীন ভাৰতীয় গণিতৰ ইতিহাসত আৰ্যভট্টৰ হাতত ধৰিয়ে ক্লাছিকেল যুগ (কিম্বা স্বৰ্ণযুগ) আৰম্ভ হয়। গণিত আৰু জ্যোতিৰ্বিদ্যা সংক্ৰান্ত আৰ্যভট্টৰ বিভিন্ন কাম মূলতঃ দুখন গ্ৰন্থত সংকলিত হৈছে বুলি জনা গৈছে। ইয়াৰ ভিতৰত ‘আৰ্যভট্টীয়’ও, এখন যিখন উদ্ধাৰ কৰা হৈছে। এইখন ৰচিত হৈছিল চাৰিটা খণ্ডত, মুঠ ১১৮টা স্তোত্ৰত। তেওঁৰ অন্য এক কৰ্ম হৈছে ‘আৰ্য-সিদ্ধান্ত’। আৰ্য-সিদ্ধান্তৰ কোনো পাণ্ডুলিপি বিচাৰি পোৱা নাযায়, কেৱল [বৰাহমিহিৰ], ব্ৰহ্মগুপ্ত আৰু প্ৰথম ভাস্কৰৰ কাৰ্যত ইয়াৰ উল্লেখ পোৱা যায়। আৰ্যভট্টই গ্ৰন্থ ৰচনা কৰিছিল পদবাচ্যৰ আকাৰত। আৰ্যভট্টীয়মাত্ৰ ২৩ বছৰ বয়সত আৰ্যভট্টই এই গ্ৰন্থখন সংকলন কৰিছিল। ইয়াৰ চাৰিটা অধ্যায় আছে দশগীতিকা, গণিতপাদ, কালক্ৰিয়াপদ আৰু গোলপাদ। দশগীতিকা, কালক্ৰিয়া আৰু গোলপাদ অধ্যায়ত গোলীয় ত্ৰিকোণমিতি আৰু জ্যোতিৰ্বিদ্যা সংক্ৰান্ত বিষয়াৱলী আছে। আনহাতে গণিতপাদত আছে পাটীগণিত, বীজগণিত, সমতল ত্ৰিকোণমিতি, দ্বিঘাত সমীকৰণ, প্ৰথম n সংখ্যক স্বাভাবিক সংখ্যাৰ ঘাতবিশিষ্ট পদ সমূহৰ বৰ্গ আৰু ঘনৰ সমষ্টি আৰু এখন ছাইন অনুপাতৰ তালিকা। ইয়াৰ উপৰিও এই অধ্যায়ত সেই সময়ৰ জনপ্ৰিয় জ্যোতিষচৰ্চাৰ প্ৰয়োজনীয় ৩৩টা গাণিতিক প্ৰক্ৰিয়াৰ বৰ্ণনা আছে। গণিতপাদত আৰ্যভট্টই পাই-ৰ মান অৰ্থাৎ বৃত্তৰ পৰিধিৰ লগত ইয়াৰ ব্যাসৰ অনুপাতৰ মান ৩.১৪১৬ হিচাপে চিহ্নিত কৰিছিল,সুদুৰ মনি গান্ধী। গণিতত আৰ্যভট্টৰ অৱদানদশমিক সংখ্যা পদ্ধতি আৰু শূন্যআৰ্যভট্টৰ কৰ্মৰাজিত দশমিক সংখ্যা পদ্ধতিৰ পূৰ্ণ ব্যৱহাৰ পোৱা যায়। আৰ্যভট্টই অৱশ্যে তেওঁৰ লিখনিত প্ৰচলিত ব্ৰাহ্মী লিপি ব্যৱহাৰ কৰিছিল। পদবাচ্যৰ আকাৰত গ্ৰন্থ ৰচনা কৰি সংখ্যা উপস্থাপনৰ এক নিজস্ব পদ্ধতি তেওঁ তৈয়াৰ কৰিছিল। তাত সংখ্যাক শব্দৰ আকাৰত উপস্থাপন কৰা হৈছিল। ব্যঞ্জনবৰ্ণবিলাকক তেওঁ ব্যৱহাৰ কৰিছিল বিভিন্ন অংক হিচাপে আৰু স্বৰবৰ্ণবিলাকৰ সহায়ত বুজাই দিছিল যে কোনটো অংক কোন অৱস্থানত আছে। সেই দিশৰ পৰা তেওঁৰ দ্বাৰা ব্যৱহৃত দশমিক সংখ্যা ব্যৱস্থা ঠিক আজিকালিৰ দশমিক সংখ্যা ব্যৱস্থাৰ নিচিনা নহয়, কেৱল পদ্ধতিগত বিবেচনাতহে আজিকালিৰ দশমিক সংখ্যাৰ লগত সামঞ্জস্যপূৰ্ণ। তেওঁৰ দশমিক সংখ্যা পদ্ধতিত শূন্য আছিল নে নাই সেই বিষয়ে দ্বিমত আছে। শূন্যৰ সমতুল্য এটা ধাৰণা তেওঁৰ কৰ্মত আছিল, সেইটোক কোৱা হৈছিল ‘খ’ (শূন্যতা অৰ্থত)। ‘খ’ ৰ ধাৰণাটো কোনো অংক হিচাপে আছিল নে শূন্যস্থান জ্ঞাপক চিহ্ন হিচাপে আছিল সেই লৈ বিতৰ্ক আছে। প্ৰচলিত কিতাপবোৰত সেইটোক শূন্যস্থান জ্ঞাপক চিহ্ন হিচাপে চিহ্নিত কৰা হৈছে, যদিও Georges Ifrahএ দাবী কৰিছিল যে আৰ্যভট্টই পৰোক্ষভাৱে সেইটোক এটা দশমিক অংক হিচাপেই ব্যৱহাৰ কৰিছিল। দশমিক পদ্ধতি ব্যৱহাৰ কৰি তেৱেঁই প্ৰথম পূৰ্ণাঙ্গ গাণিতিক প্ৰক্ৰিয়া বৰ্ণনা কৰিছিল, ইয়াৰ ভিতৰত আছিল সংখ্যাৰ বৰ্গমূল আৰু ঘনমূল নিৰ্ণয়। এয়াই আছিল দশমিক সংখ্যা ব্যৱস্থাক পূৰ্ণাঙ্গৰূপত স্থাপিত কৰাৰ বাবে সকলোতকৈ বেছি জৰুৰী, কাৰণ স্থানাঙ্ক ব্যৱস্থাত সংখ্যাৰ উপস্থাপন বিভিন্ন সময়ত বিভিন্ন সভ্যতাত ব্যৱহাৰ কৰা হৈছিল যদিও স্থানাঙ্ক ব্যৱস্থাত গাণিতিক প্ৰক্ৰিয়াবোৰৰ ব্যৱহাৰ প্ৰতিষ্ঠা কৰা হোৱা নাছিল, গতিকে ইয়াৰ পদ্ধতিগত উপযোগিতা সম্পূৰ্ণৰূপে অনুধাবিত হোৱা নাছিল। সেই সময়ত সবাতোকৈ জৰুৰী আছিল দশমিক পদ্ধতি ব্যৱহাৰ কৰি পদ্ধতিগত সাধাৰণীকৰণ নিশ্চিত কৰা, যিটো সৰ্বপ্ৰথম কৰিছিল আৰ্যভট্টই। সেইবাবে তেৱেঁই পূৰ্ণাঙ্গ দশমিক সংখ্যা পদ্ধতি প্ৰৱৰ্তনৰ কৃতিত্বৰ দাবীদাৰ। ত্ৰিকোণমিতিআৰ্যভট্টৰ দ্বিতীয় গুৰুত্বপূৰ্ণ গাণিতিক অৱদান হৈছে আধুনিক ত্ৰিকোণমিতিৰ সূত্ৰপাত কৰা। ত্ৰিকোণমিতিৰ ব্যৱহাৰৰ ক্ষেত্ৰত আৰ্যভট্টই ছাইন, ভাৰছাইন (Versine = 1 - Cosine), বিপৰীত ছাইনৰ ব্যৱহাৰ কৰিছিল। সূৰ্য সিদ্ধান্তত এই সংক্ৰান্তত কিছু কথা থাকিলেও আৰ্যভট্টৰ কৰ্মত ইয়াৰ পূৰ্ণাঙ্গ বিৱৰণ পোৱা যায়। ছাইন ফলনৰ বা যুগ্ম আৰু অৰ্ধ কোণৰ সূত্ৰবিলাক তেওঁ জানিছিল বুলি ধাৰণা কৰা হয়। আৰ্যভট্টই ব্যৱহাৰ কৰা গুৰুত্বপূৰ্ণ ত্ৰিকোণমিতিক সম্পৰ্কবিলাকৰ এটা হʼল- sin (n+1)x ক sin x আৰু sin (n-1)x অৰ সহায়ত প্ৰকাশ কৰা। আৰ্যভট্টই এখন ছাইন তালিকা তৈয়াৰ কৰিছিল, যʼত ৩ ডিগ্ৰী ৪৫ মিনিট পাৰ্থক্যত ৯০ ডিগ্ৰী পৰ্যন্ত ছাইন আৰু ভাৰছাইনৰ মান উল্লেখ কৰা হৈছিল। তেওঁ ব্যৱহাৰ কৰা এই সূত্ৰটোৰ দ্বাৰা খুব সহজতেই এই ছাইন তালিকাখন recursively তৈয়াৰ কৰি পেলোৱাটো সম্ভৱ। সেই সূত্ৰটো হʼল- sin (n + 1) x - sin nx = sin nx - sin (n - 1) x - (1/225)sin nx আৰ্যভট্টই তৈয়াৰ কৰা ছাইন তালিকাখন ইয়াত উল্লেখ কৰা হʼল। আৰ্যভট্টই তেওঁৰ ছাইন তালিকাত sinθ ৰ সলনি Rsinθ ব্যৱহাৰ কৰিছিল। ইয়াত R অৰ দ্বাৰা এক নিৰ্দিষ্ট বৃত্তৰ ব্যাসাৰ্ধ বুজোৱা হৈছে। আৰ্যভট্টই এই ব্যাসাৰ্ধৰ মান ব্যৱহাৰ কৰিছিল ৩৪৩৮, ইয়াৰ সম্ভাব্য কাৰণ হʼব পাৰে যে আৰ্যভট্টই এক মিনিট পৰিমাণ কোণৰ বাবে একক ব্যাসাৰ্ধৰ বৃত্তত বৃত্তচাপৰ দৈৰ্ঘ্যকে এক একক হিচাপে ধৰি লৈছিল। এটা বৃত্তৰ সম্পূৰ্ণ পৰিধিয়ে তাৰ কেন্দ্ৰত (৩৬০×৬০) = ২১৬০০ মিনিট কোণ ধাৰণ কৰে। সেই হিচাপত বৃত্তৰ পৰিধি হʼল ২১৬০০ একক আৰু সেই বৃত্তৰ ব্যাসাৰ্ধ হʼব ২১৬০০/২π, আৰ্যভট্টৰ হিচাপত পোৱা π = ৩.১৪১৬ ব্যৱহাৰ কৰিলে ব্যাসাৰ্ধৰ মান প্ৰায় ৩৪৩৮ হয়।
বীজগণিতএকাধিক অজ্ঞাত ৰাশি সম্বলিত সমীকৰণ (সাধাৰণভাবে ডায়োফেণ্টাইন সমীকৰণ নামে পৰিচিত) সমাধান কৰাৰ এটা সাধাৰণ পদ্ধতি তৈয়াৰ কৰিছিল আৰ্যভট্টই। ইয়াৰ নাম আছিল "কুত্তক।" প্ৰথম ভাস্কৰৰ কৰ্মত কুত্তক পদ্ধতিৰ ব্যাখ্যা দিয়াৰ সময়ত এটি উদাহৰণ ব্যবহাৰ কৰা হৈছে- "এনে এটা সংখ্যা নিৰ্ণয় কৰা যাক ৮ৰে হৰণ কৰিলে ৫, ৯ৰে হৰণ কৰিলে ৪ আৰু ৭ৰে হৰণ কৰিলে ১ অৱশিষ্ট থাকে।" পৰৱৰ্তীকালত এই ধৰণৰ সমস্যা সমাধানৰ বাবে ভাৰতবৰ্ষত কুত্তক পদ্ধতিটোৱেই আদৰ্শ পদ্ধতি হিচাপে ব্যৱহৃত হৈছে। আৰ্যভট্টৰ কৰ্মৰাজিত প্ৰথম n সংখ্যক স্বাভাবিক সংখ্যাৰ ঘাতবিশিষ্ট পদ সমূহৰ বৰ্গ আৰু ঘনৰ সমষ্টিৰ সূত্ৰৰ উল্লেখ পোৱা যায়। পাইৰ মানআৰ্যভট্টীয় গ্ৰন্থৰ দ্বিতীয় অধ্যায়ত আৰ্যভট্টই লিখিছিল- “চাৰিৰ লগত এশ যোগ কৰি তাক আঠেৰে পূৰণ কৰি তাৰ লগত বাসষ্ঠী হাজাৰ যোগ কৰিলে বিছ হাজাৰ একক ব্যাসৰ বৃত্তৰ পৰিধি পোৱা যায়”। সেই হিচাপে আৰ্যভট্টই পাইৰ মান নিৰ্ণয় কৰিছিল ((৪+১০০)×৮+৬২০০০)/২০০০০০ = ৬২৮৩২/২০০০০০ = ৩.১৪১৬, যিটো তেওঁৰ সময় পৰ্যন্ত যিকোনো গণিতজ্ঞই বাহিৰ কৰা মানবিলাকৰ ভিতৰত সকলোতকৈ সঠিক। জ্যোতিৰ্বিদ্যাত আৰ্যভট্টৰ অৱদানআৰ্যভট্টীয় গ্ৰন্থখনৰ গোলপাদ অংশত আৰ্যভট্টই উদাহৰণৰ মাধ্যমেৰে উল্লেখ কৰিছিল যে পৃথিৱীয়ে নিজ অক্ষৰ সাপেক্ষে ঘুৰে। তেওঁ পৃথিৱীৰ আহ্নিক গতিৰ হিচাপো কৰিছিল। তেওঁৰ হিচাপত পৃথিৱীৰ পৰিধি আছিল ৩৯,৯৬৮ কিলোমিটাৰ, যিটা সেই সময় পৰ্যন্ত বাহিৰ কৰা যিকোনো পৰিমাপতকৈ শুদ্ধতৰ (ভুল মাত্ৰ ০.২%)। সৌৰ জগতত গ্ৰহবোৰৰ কক্ষপথৰ আকৃতি তেওঁৰ মতে আছিল উপবৃত্তাকৃতিৰ, তেওঁ এক বছৰ সময়ৰ প্ৰায় সঠিক এক পৰিমাপ আগবঢ়াইছিল, সূৰ্যগ্ৰহণ আৰু চন্দ্ৰগ্ৰহণৰ সঠিক কাৰণ উল্লেখ কৰা আৰু তাৰ সময় নিৰ্ধাৰণ কৰাৰ ক্ষেত্ৰতো তেওঁ সফল হৈছিল। তেওঁ সৌৰজগতৰ পৃথিৱীকেন্দ্ৰিক নে সূৰ্যকেন্দ্ৰিক আৰ্হি ব্যৱহাৰ কৰিছিল সেই লৈ বিতৰ্ক আছে। B.L. van der Waerden, Hugh Thurston ৰ লিখনিত আৰ্যভট্টৰ জ্যোতিৰ্বিদ্যা সংক্ৰান্তিয় হিচাপ-নিকাচৰ পদ্ধতিক সূৰ্যকেন্দ্ৰিক বুলি দাবী কৰা হৈছে। Noel Swerdlow য়ে অৱশ্যে এই কাৰণে B.L. van der Waerden ৰ প্ৰত্যক্ষ সমালোচনা কৰিছে আৰু বিভিন্ন ব্যাখ্যাৰ মাধ্যমেৰে দেখুৱাইছে যে আৰ্যভট্টৰ ধাৰণাত সৌৰজগত পৃথিৱীকেন্দ্ৰিকেই আছিল। আৰ্যভট্টই সূৰ্যগ্ৰহণ আৰু চন্দ্ৰগ্ৰহণৰ হিন্দু পৌৰাণিক ধাৰণাৰ পৰিৱৰ্তে প্ৰকৃত কাৰণবোৰ ব্যাখ্যা কৰি গৈছে। ইয়াৰ লগতে তেওঁ সূৰ্য গ্ৰহণ আৰু চন্দ্ৰগ্ৰহণৰ সময়কাল নিৰ্ণয়ৰ পদ্ধতিও বাহিৰ কৰিছিল। আৰ্যভট্টই কৈছিল যে চন্দ্ৰৰ পোহৰ প্ৰকৃততে সূৰ্যৰ পোহৰৰ প্ৰতিফলনৰেই ফলাফল। তথ্য সংগ্ৰহ
বহিঃসংযোগ
|
Portal di Ensiklopedia Dunia