نقاط مشتركة بدائرة
![]() ![]() في الهندسة الرياضية، تتصف مجموعةٌ من النقاط بـ«الدائرية» إذا كانت نقاطاً مشتركة بدائرة. أي أنها تقع على محيط دائرة مشتركة. بنحوٍ مكافئ، هناك نقطةً بُعْدُها بين كل نقطة أخرى من مجموعة النقاط متساوٍ. تُسمّى هذه النقطة مركز الدائرة. حتى تشتركَ نقاطٌ بدائرةٍ، على المنصفات العمودية لكل نقطتين أن تلتقي في نقطة واحدة هي مركز الدائرة المحيطة بالنقاط، والعكس صحيح. مبرهنات
البرهان: إذا كانت النقطة O متساوية البعد عن طرفي PQ أي OP = OQ، نرسم OM حيث M منتصف PQ، عندئذٍ: MP = MQ وبالتالي المثلثان OMP وOMQ متطابقان بحسب حالة (ضلع.ضلع.ضلع)، ومنه ، لكن تشكل مع زاوية مستقيمة، وبالتالي ، ومنه OM منصف عمودي لـ PQ، وO واقعة عليه.
البرهان: بفرض PQ قطعة مستقيمة محورها OM، فإن : MP=MQ المضلعات الدائريةالمثلثاترؤوس أي مثلث تشترك بدائرة، الدائرة المشتركة تسمى الدائرة المحيطة بالمثلث، ويحسب نصف قطرها، بأطوال أضلاع المثلث a، b، c: الرباعيات الدائرياتيحاط المضلع ABCD بدائرة إذا وفقط إذا كانت ويحسب نصف قطر الدائرة المحيطة بدلالة أطوال الأضلاع a، b، c، d، ونصف المحيط S حيث ، بالقانون: وقد استنتج هذا القانون لأول مرة من قبل العالم الهندي ڤاتاسِّيري پاراميشڤارا في القرن الخامس عشر. وبفرض ABCD شكل رباعي، وبحسب مبرهنة بطليموس فإنه دائري إذا وفقط إذا كان جداء القطرين يساوي مجموع جداءي كل ضلعين متقابلين أي أن: . وإذا كانت النقطة X هي نقطة تلاقي القطرين ACو BD فإن ABCD شكل دائري إذا وفقط إذا كان: . تعرف هذه النظرية باسم قوة نقطة. مضلعات ذوات n ضلعاًبشكل عام، تكون المضلعات دائرية إذا كانت منصفاتها العمودية تلتقي في نقطة واحدة، وتلك النقطة هي مركز الدائرة.[1] مراجع
![]() في كومنز صور وملفات عن Concyclic points. |