Teknik Keamanan Pangan adalah cabang ilmu teknik yang mengkhususkan pada aplikasi prinsip
ilmu teknik untuk menyelesaikan masalah keamanan mikrobial dan kimia pada produk pangan, sedangkan keamanan pangan itu sendiri adalah disiplin ilmu yang melakukan penanganan,
penyajian, dan penyimpanan bahan pangan dengan cara sedemikian rupa agar terhindar dari penyakit
yang bersumber dari bahan pangan (foodborne illness). Prinsip ini dapat diaplikasikan dalam
perkembangan intervensi teknologi untuk dekontaminasi dan pengawetan pangan. Ilmu teknik
yang terintegrasi dengan konsep mikrobiologi dan kimia memegang potensi yang cukup besar dalam
pengembangan solusi non konvensional terhadap masalah keamanan pangan yang membahayakan.
Pelanggaran terhadap keamanan pangan dapat terjadi ketika pemrosesan, penyimpanan, dan
distribusi bahan pangan, baik itu berupa prosesnya maupun alat yang digunakan. Teknik keamanan
pangan merupakan bagian yang tidak terpisah dari teknik pengolahan pangan dan hasil pertanian,
ilmu pangan, dan teknologi pangan karena semuanya bertanggung jawab dalam hal pemrosesan
bahan pangan sejak dipanen hingga siap dipasarkan.
Teknik keamanan pangan bukan mengenai investigasi dan pengecekan suatu proses maupun rantai produksi
pangan, namun lebih kepada aplikasi teknik untuk menciptakan proses maupun rantai produksi pangan
yang aman tanpa mengurangi kriteria yang dibutuhkan masyarakat mengenai produk pangan.
Prinsip ilmu teknik keamanan pangan dapat diaplikasikan di:
Pengendalian mikroorganisme pada sumber bahan pangan dan bahan mentah
Desain produk dan pengendalian proses
Aplikasi Good Hygienic/Manufacturing Practices (GHPs/GMPs)
Implementasi sistem Hazard Analysis and Critical Control Point (HACCP) sepanjang rantai pengolahan pangan
Penyediaan produk pangan yang aman merupakan proses yang rumit, membutuhkan pengendalian terpadu
sepanjang rantai produksi pangan dan konsumsinya.[1][2] Peningkatan
kepedulian terhadap keamanan pangan teah memicu pengembangan yang terus berlanjut dalam bidang
teknologi pemrosesan. Para pakar di bidang teknik, mikrobiologi, kimia, dan cabang ilmu lainnya
telah membawa peningkatan yang cukup berarti dalam kualitas dan keamanan pangan.
Pemrosesan pangan konvensional memanfaatkan proses termal (pemanasan, pendinginan, dsb)
untuk membunuh atau menon-aktifkan kontaminan mikrobiologi. Namun, pemrosesan termal memicu
perubahan fisik dan kimia pada bahan pangan. Pengawet kimia dan senyawa antimikroba alami juga
telah digunakan secara ekstensif pada pengawetan pangan. Dalam dua tahun ini, sejumlah alternatif
pengolahan pangan non-termal telah berkembang demi pengendalian kontaminan mikrobial dan pemenuhan
kebutuhan konsumen terhadap bahan pangan yang segar dengan proses pengolahan yang minimal.[3]
Penggunaan teknologi dalam mencapai keamanan pangan
Pemrosesan bertekanan tinggi
Pemrosesan bertekanan tinggi adalah metode di mana bahan pangan diberikan tekanan yang tinggi
(hingga 700 MPa) dengan atau tanpa penambahan panas, untuk menon-aktifkan mikrob atau untuk
mengubah sifat dan penampilan bahan pangan dengan maksud memenuhi keinginan konsumen.[4][5][6][7] Pemrosesan ini dapat
mempertahankan kualitas bahan pangan, mempertahankan kesegaran alaminya, dan memperpanjang umur simpan bahan pangan. Pemrosesan ini dapat digunakan baik pada bahan pangan cair maupun padat.
Contoh bahan pangan yang sudah beredar yang telah mengalami pemrosesan ini adalah smoothies,
guacamole, bahan pangan siap saji, kerang, ham, daging ayam, jus buah, dan
salsa yang diproduksi oleh industri pengolahan pangan. Bahan pangan utama yang menjadi subjek
pemrosesan ini adalah bahan pangan yang memiliki tingkat keasaman yang tinggi karena bisa dengan
mudah menon-aktifkan mikrob di dalamnya. Makanan dengan tingkat keasaman yang rendah memiliki
kesulitan terutama dalam mematikan spora atau bakteri yang dorman.
Tekanan bekerja pada semua titik dari produk dalam besaran yang sama, berbeda dengan pemrosesan
termal terkait adanya gradien pemanasan yang mengakibatkan adanya perubahan yang dipicu oleh hal
tersebut seperti browning, denaturasi, atau pembentukan lapisan.[4]
Mikroorganisme dengan tingkat pertumbuhan yang eksponensial bisa lebih mudah dinon-aktifkan
dibandingkan yang stasioner, dan bakteri gram positif lebih resistan dibandingkan [[bakteri gram
negatif]]. Laporan penelitian juga menunjukkan bahwa pemrosesan dengan tekanan yang tinggi dapat
digunakan untuk melawan hepatitis A pada kerang dan juga norovirus.[8][9] Penelitian mengenai inaktivasi spora bakteri membutuhkan tekanan tinggi dan temperatur
yang sedang sekaligus. Hingga saat ini, jumlah strain bakteri Clostridium botulinum yang
bisa dinonaktifkan dengan metode ini masih terbatas. Dan hingga saat ini, spora non-proteolitik tipe
B adalah spora patogen yang paling tahan terhadap tekanan tinggi.[10][11][12] Dan di antara bakteri pembentuk endospora,
Bacillus amyloliquefaciens menghasilkan spora yang paling tahan teradap tekanan tinggi.[13][14]
Penghancuran mikroorganisme dengan medan gelombang elektrik dicapai dengan
mengaplikasikan gelombang pendek bertegangan tinggi di antara serangkaian
elektrode yang menyebabkan gangguan pada membran sel mikrob.[30]
Metode ini melibatkan pengolahan pangan dengan menempatkannya di antara rangkaian elektrode dengan
gelombang bertegangan tinggi dalam ordo 20-80 kV/cm. Metode seperti ini bahkan bisa diaplikasikan
untuk proses pasteurisasi.[31] Hingga saat ini, teknologi yang tersedia hanya
untuk bahan pangan yang bisa mengalir.
Banyak sel vegetatif dari bakteri, jamur, dan ragi yang bisa dinon-aktifkan dengan
metode ini, namun spora bakteri tidak.[32] Bakteri gram positif lebih
resistan terhadap metode ini, dan ragi menunjukkan sensivitas yang lebih tinggi dari bakteri.[30]
Gelombang pendek bertegangan tinggi memecah membran sel dari mikroorganisme vegetatif dalam media
cair dengan cara mengembangkan pori-pori yang ada (elektroporasi) atau membuat pori-pori membran
yang baru.[33][34] Pembentukan pori tersebut bisa reversibel
maupun irreversibel tergantung banyak faktor seperti intensitas medan listrik, durasi gelombang,
dan jumlah gelombang. Membran sel yang terelektrifikasi menjadi sangat permeabel bahkan terhadap
molekul yang kecil sehingga menyebabkan pembengkakan dan kerusakan pada membran sel.
Sejumlah faktor kritis pemrosesan, kondisi penelitian yang kurang spesifik, dan keragaman alat
membuat metode ini sulit untuk didefinisikan secara tepat dalam hal parameter yang esensial untuk
inaktivasi mikrob.
Faktor kunci yang mengendalikan ketahanan dari sel-sel mikrob terhadap irradiasi adalah ukuran
organisme (semakin kecil organisme, semakin resistan), tipe organisme, jumlah dan usia relatif dari
mikrob di dalam bahan pangan, dan keberadaan oksigen. Komposisi dari bahan pangan juga
memengaruhi respon mikrob terhadap irradiasi.[39] Perlakuan radiasi pada
dosis 2-7 kGy, tergantung kondisi irradiasi dan bahan pangannya, bisa secara efektif mengurangi
bakteri patogen yang tidak berspora seperti Salmonella sp, Staphylococcus aureus,
Campylobacter jejuni, Listeria monocytogenes, Escherichia coli, tanpa
memengaruhi sifat organoleptik (rasa, bau, dsb), nutrisi, dan kuaitasnya.[35]
Disinfeksi ultraviolet
Cahaya ultra violet gelombang pendek (UV C, 254 nm) dapat digunakan untuk mengurangi keberadaan
mikrob di udara maupun di permukaan bahan pangan. UV C juga dapat digunakan
untuk mengurangi patogen dalam air. Jangkauan radiasi 250-260 nm mematikan bagi sebagian
besar mikroorganisme, termasuk bakteri, virus, jamur bermiselium, ragi, dan alga.[40] Kerusakan akibat UV C ada pada molekul sel yang menjadi target tergantung dosis UV C,
misalnya pada dosis antara 0.5 - 20 J/m2 dapat mengakibatkan kerusakan pada DNA mikrob.[41] Begitu DNA rusak, kemampuan reproduksi dan penyebaran penyakit menjadi tidak ada.
Sinar UV gelombang panjang (UV A, >320 nm) memiliki kemampuan terbatas dalam mengeliminasi mikrob,
namun UV A mampu menembus air lebih baik dari UV C.[40] Kemampuan UV A dalam
mengeliminasi bakteri dapat ditingkatkan dengan penambahan senyawa fotosensitif (misalnya
furocoumarin).
Parameter yang menentukan keberhasilan penggunaan sinar UV dalam teknik keamanan pangan adalah
desain reaktor UV, dinamika fluida, dan sifat absorptivitas dari bahan pangan. Partikel
tersuspensi dapat mengurangi efektivitas penggunaan UV karena menyebabkan meningkatnya jumlah
absorban, pemantulan, dan penghalangan sinar UV.[42]
Untuk mensterilkan udara dalam fasilitas manufaktur pangan, kombinasi filter udara dan cahaya UV
amat direkomendasikan.[43] Kombinasi UV dan ozon memiliki kekuatan mengoksidasi yang
kuat dan dapat mengurangi jumlah material organik di dalam air hingga mendekati nol.[44]
Teknik penggunaan radiasi UV C dan panas sekaligus untuk produksi daging mentah berkualitas tinggi
telah dipatenkan.[45]
Meski relatif mudah dan tidak mahal, pemaparan sinar UV dapat menjadikan makanan kehilangan rasa.[46]
Ozon
Ozon adalah biosida yang efektif dalam melawan bakteri, virus, jamur, dan telah lama
digunakan dalam pembersihan bahan pangan tanpa pencucian. Konsentrasi ozon yang rendah dengan waktu
kontak yang sempit cukup untuk mematikan bakteri, jamur, ragi, parasit, dan virus.[47]
Sekarang, ozon dalam bentuk gas dan cair dapat digunakan dengan kontak langsung terhadap bahan
makanan seperti buah-buahan, sayur-mayur, daging mentah maupun daging siap makan, ikan, dan telur.
Hasil penelitian menunjukkan bahwa spora bakteri merupakan yang paling resistan, dan sel vegetatif
bakteri adalah yang paling sensitif terhadap ozon.[48] Dalam proses sanitasi, air yang
diperkaya dengan ozon diketahui dapat mengurangi populasi Staphylococcus aureus,
Salmonella chloraesuis, dan Pseudomonas aeruginosa sebanyak 6 log; Escherichia coli sebanyak 5 log; dan Listeria monocytogens dan Campylobacter jejuni sebanyak
4 log,[9] di mana 1 log adalah 101.
Di antara spora yang dihasilkan berbagai jenis bakteri, spora Bacillus stearothermophilus
memiliki resistansi tertinggi, dan spora Bacillus cereus memiliki resistansi terendah,
sehingga B. stearothermophilus dapat digunakan sebagai indikator efektivitas suatu alat sanitasi
yang menggunakan ozon.[49] Ozon dalam larutan cair dapat digunakan dengan
alat-alat yang terbuat dari keramik, gelas, silikon, teflon, dan baja tahan karat, namun tidak cocok digunakan dengan alat yang terbuat dari karet alam, poliuretan,
dan plastik berbasis resin.
Perbandingan antara masing tipe aplikasi teknologi dalam teknik keamanan pangan
Sifat
Pemrosesan termal
Pemrosesan bertekanan tinggi
Pemrosesan medan gelombang listrik
Irradiasi
Disinfeksi ultraviolet
Ozon
Cara pengoperasian
Curah, kontinu
Curah, semi kontinu
Kontinu
Curah
Curah, kontinu
Curah, kontinu
Luas cakupan penggunaan
Bahan pangan padat dan cair
Bahan pangan padat dan cair
Bahan pangan cair dan semi cair
Bahan pangan padat dan cair
Udara, air minum, bahan pangan cair, dan permukaan bahan pangan
Permukaan bahan pangan
Inaktivasi mikrob
Mikroorganisme vegetatif, spora, alga, virus
Mikroorganisme vegesatif, beberapa virus, dan kemungkinan juga spora (ketika dikombinasikan dengan panas)
Mikroorganisme vegetatif
Mikroorganisme vegetatif, spora, parasit
Mikroorganisme vegetatif, alga, virus
Mikroorganisme vegetatif, spora, parasit, virus
Kualitas
Mempengaruhi komponen yang sensitif terhadap panas (rasa, nutrisi, dsb); menon aktifkan enzim
MEmpertahankan kualitas alaminya; berpotensi menghasilkan bentuk tekstur tertentu; efek bervariasi terhadap inaktivasi enzim
Menyebabkan efek minimal; efek berariasi terhadap inaktivas enzim
Beberapa kehilangan rasa dan vitamin; perubahan pada tekstur
Kehilangan rasa pada beberapa bahan pangan
Penggunaan berlebih akan memengaruhi warna dan rasa
Pengemasan
Pemrosesan setelah pengemasan atau pengemasan aseptik setelah pemrosesan
Pemrosesan setelah pengemasan (membutuhkan kemasan yang fleksibel minimal pada satu bidang permukaan)
Pengemasan aseptik setelah pemrosesan
Pemrosesan setelah pengemasan (dibutuhkan kemasan yang mampu mentransmisikan radiasi)
Pengemasan aseptik setelah pemrosesan
Pengemasan aseptik setelah pemrosesan
Teknik pengendalian, pemantauan, dan identifikasi
Sebanyak 38% produk makanan yang ditarik oleh FDA pada tahun 2004 terkait dengan kontaminasi
mikrob, dan juga 44% produk daging, daging ayam, dan telur oleh USDA Food Safety and Inspection
Service.[50] Dan sepanjang 20 tahun terakhir, 5000 produk yang ditarik dari pasar
menunjukkan adanya Salmonella typhimurium, Listeria monocytogenes, dan Escherichia coli.[51] Hal ini menjadikan pendeteksian dan identifikasi patogen pada bahan pangan yang
cepat, efisien dan dapat diandalkan menjadi suatu kebutuhan.
Pendeteksian patogen dan kontaminan mikrob lainnya penting demi menjamin keamanan pangan. Metode
konvensional dalam pendeteksian patogen bahan pangan memakan banyak waktu dan tenaga. Untuk
menyelesaikan seluruh fase pemeriksaan dibutuhkan 16-48 jam. Penemuan terbaru di bidang teknologi
menjadikan pendeteksian dan identifikasi lebih cepat, nyaman, sensitif, dan lebih spesifik
dibandingkan pengujian konvensional.
Ada banyak metode yang dilakukan dalam teknik pengendalian, pemantauan, dan identifikasi dalam
teknik keamanan pangan.
Media mikrobiologis kromogenik
Salah satu penemuan yang terkenal dalam bidang mikrobiologi adalah piringan media kromogenik
yang mampu membedakan spesies patogen berbahaya dari spesies lainnya. Media ini memanfaatkan
substansi kromogenik yang menghasilkan sekumpulan warna yang terkait dengan spesies patogen tertentu
ketika substrat ini mengalami hidrolisis oleh enzim patogen tersebut. Piringan kromogenik mudah
digunakan dan spesifik terhadap spesies patogen dan strain tertentu tergantung enzim yang
dikeluarkan oleh patogen tersebut. Dan pada umumnya, hasilnya bisa terlihat setelah 18-24 jam
setelah inkubasi. Hal ini memungkinkan bagi perusahaan makanan untuk meminimalisasi biaya
terkait dengan hal yang serupa, dan waktu yang terpakai bisa jauh berkurang.[51]
Metode pengujian molekuler dan imunologik
Pendeteksian berbasis teknologi molekular atau DNA adalah salah satu area yang mengalami perkembangan yang cepat terkait pengembangan sistem pengujian patogen. Pengujian berbasis imunologik seperti pengujian imunologik terkait enzim (Enzyme-Linked Immunological Assay, ELISA), pengujian imunologik berlapis berbasis fluoresensi (fluorence-based sandwich immunological assay), Western blot, dan pengujian aglutinasi juga dapat digunakan untuk mengetahui keberadaan mikrob di dalam bahan pangan.[52] Secara umum, kelemahan metode ini adalah ketidak mampuan dalam mendeteksi keberadaan patogen yang terdapat dalam jumlah yang kecil, sensitivitas yang bervariasi, dan kemungkinan untuk melakukan isolasi pengkulturan untuk satu organisme
Kuncinya ada pada DNA dari bakteri patogen itu sendiri dan komponen yang ada di sekitarnya. Pada pengujian berbasis DNA, yang menjadi target adalah gen RNA ribosom yang dapat diambil dalam jumlah banyak sehingga memberikan sensitivitas pengujian yang lebih tinggi.[53] Ada juga yang memanfaatkan reaksi berantai polimerase (polymerase chain reaction, PCR) yang memanfaatkan prinsip dasar hibridisasi DNA di mana potongan pendek DNA primer dihibridisasi pada bagian yang spesifik yang diperbanyak secara enzimatis.[54] Secara teori, PCR dapat memperbanyak satu salinan DNA menjadi jutaan dalam waktu kurang dari 2 jam sehingga mengurangi dan bahkan meniadakan kebutuhan terhadap pengkulturan bakteri. Kehadiran inhibitor pada makanan dan pada banyak media kultur dapat mencegah terjadinya pengikatan primer dan mengurangi efisiensi perbanyakan DNA sehingga sensitivitas yang tinggi yang mungkin didapat dari PCR pada kultur murni menjadi berkurang ketika dilakukan pengujian terhadap bahan pangan. PCR juga dibatasi oleh kebutuhan terhadap informasi yang spesifik terhadap patogen yang menjadi target. PCR juga tidak dapat digunakan untuk mendeteksi jumlah jenis organisme yang banyak dalam suatu campuran secara simultan.
ELISA (enzyme-linked immunological assay) adalah teknik biokimia yang digunakan untuk mendeteksi antibodi atau antigen dari sampel.[55][56] Antibodi yang digunakan dipertemukan dengan enzim yang akan menghasilkan efek kromogenik atau fluoresensi yang akan memberikan tanda kehadiran bakteri dan seberapa besar jumlahnya, tergantung waktu yang digunakan untuk melakukan pengayaan kultur.
Biosensor
Biosensor adalah metode yang dikembangkan untuk mendeteksi mikroorganisme dan toksin yang berbahaya. Biosensor menggunakan bioreseptor seperti biokatalis, bioafinitas, dan reseptor hibrida untuk mengenali berbagai tanda khusus yang akan terikat dengan bioreseptor seperti enzim, antibodi, mikrob, protein, hormon, asam nukleat, dan sebagainya; lalu transduser akan mengubah sinyal itu ke dalam informasi analitik kuantitatif.[57] Prinsipnya sederhana, patogen dideteksi berdasarkan karakteristiknya, misalnya enzim yang dikeluarkannya. Enzim itu akan berikatan dengan senyawa pengenal yang ada pada biosensor, misalnya protein yang mampu membuat enzim itu bekerja. Hal itulah yang dideteksi oleh biosensor. Dan seberapa banyak hasil pekerjaan dari enzim yang menjadi target biosensor menunjukkan berbagai nilai kuantitatif seperti seberapa banyak patogen yang terdapat dalam bahan pangan, seberapa berbahaya enzim tersebut (jika enzim itu yang menjadikan bahan pangan beracun), dsb.
Kelemahan biosensor adalah kemungkinan adanya interaksi antara biosensor dengan bahan pangan, kalibrasi, perawatan, sterilisasi, tingkat reproduksi alat biosensor di pabrik, dan biaya.
Spektrometri inframerah
Spektrometriinframerah adalah metode pemanfaatan spektrum yang dihasilkan dari pemancaran inframerah terhadap sampel. Spektrum yang dihasilkan berupa tingkat reflektansi, transmisi, ataupun keduanya yang dapat ditangkap langsung, atau tingkat absorbansi yang didapat dari hasil kalkulasi. Setiap bakteri, ragi, dan mikroorganisme lainnya yang berada di dalam bahan pangan dapat dikarakterisasi menggunakan metode ini.[62] Spektrum yang dihasilkan spesifik terhadap spesies dan strain bakteri tertentu. Spesies yang tidak diketahui pun bisa diketahui keberadaannya dengan menganalisis spektrum yang didapat di mana setiap jenis komponen organik dari bakteri (lipid, protein, hingga DNA) akan mengabsorpsi inframerah pada frekuensi tertentu.
Referensi
^IFT (Institute of Food Technologists). IFT expert report on emerging microbiological food safety
issues. Implications for control in the 21st century. http://members.ift.org/[pranala nonaktif permanen] IFT/Research/IFTExpertReports/
microsfs_report.htm (terakhir diunduh tanggal 12 Maret 2006). 2002.
^L-A. Jaykus, G. R. Acuff, F. Busta, et al. Managing food safety: Use of performance standards and
other critieria in food inspection systems. An authoritative report of the Institute of Food Technologists,
October, 2004.
^S. Brul and P. Coote. “Preservative agents in foods-Mode of action and microbial resistance mechanisms.”
Int. J. Food Microbiol. 50: 1–17, 1999..
^ abJ. C. Cheftel and J. Culioli. “Review: High pressure, microbial inactivation and food preservation.”
Food Sci. Technol. Int. 1: 7590, 1995.
^D. Farkas and D. Hoover. “High pressure processing. Kinetics of microbial inactivation for alternative
food processing technologies.” J. Food Sci. Supplement. 47–64, 2000.
^R. Ramaswamy, V. M. Balasubramaniam, and G. Kaletunc. High pressure processing: fact sheet
for food processors. FST-1-04. Ohio State University Extension, Columbus, OH, 2004. http://ohioline[pranala nonaktif permanen].
osu.edu/fse-fact/0001.html. Diunduh tanggal 12 Maret 2006.
^J. P. P. M. Smelt. “Recent advances in the microbiology of high pressure processing.” Trends Food
Sci. Technol. 9: 152–158, 1988.
^K. R. Calci, G. K. Meade, R .C. Tezloff, and D. H. Kingsley. “High-pressure inactivation of hepatitis
A virus within oysters.” Appl. Environ. Microbiol. 71: 339–343, 2005.
^ abJ. L. Bricher. “Process control: Innovation in microbial interventions.” Food Safety Mag. 11: 29–33,
2005a. Kesalahan pengutipan: Tanda <ref> tidak sah; nama "Bricher, 2005a" didefinisikan berulang dengan isi berbeda
^V. M. Balasubramaniam. “High pressure food preservation.” In: Encyclopedia of Agricultural,
Food and Biological Engineering (Dennis R. Heldman, ed.), Marcel Dekker, Inc. 490–496,
2003.
^T. Okazaki, K. Kakugawa, T. Yoneda, and K. Suzuki. “Inactivation behavior of heat-resistant bacterial
spores by thermal treatments combined with high hydrostatic pressure.” Food Sci. Technol.
Res. 6: 204–207, 2000
^N. R. Reddy, H. M. Solomon, R. C. Tetzloff, and E. J. Rhodehamel. “Inactivation of Clostridium
botulinum Type A spores by high-pressure processing at elevated temperature.” J. Food Prot. 66:
1402–1407, 2003
^D. Margosch, M. G. Gäzle, M. A. Ehrmann, and R. F. Vogel. “Pressure inactivation of Bacillus
endospores.” Appl. Env. Microbiol. 70: 7321–7328, 2004a.
^S. Rajan, J. Ahn, V. M. Balasubramaniam, and A. E. Yousef.. “Combined pressure-thermal inactivation
kinetics of Bacillus amyloliquefaciens spores in egg patty mince.” J. Food Prot. 69:
853–860, 2006a.
^ abcdefM. Patterson. “Under pressure: A novel technology to kill microorganisms in foods.” Culture. 25: 2–5, 2004.
^ abcdT. Shigehisa, T. Ohmori, A. Saito, S. Taji, and R. Hayashi. “Effects of high hydrostatic pressure on characteristics pf pork slurries and inactivation of microorganisms associated with meat and meat products.” Int. J. Food Microbiol. 12: 207–216, 1991.
^ abA. Bayindirli, H. Alpas, F. Bozoglu, and M. Hizal.. “Efficacy of high pressure treatment on inactivation of pathogen microorganisms and enzymes in apple, orange, apricot and sour juices.” Food Cont. 17: 52–58, 2006.
^M. W. Ariefdjohan, P. E. Nelson, R. K. Singh, A. K. Bhunia, V. M. Balasubramaniam, and N. Singh.
“Efficacy of high hydrostatic pressure treatment in reducing Escherichia coli O157: H7 and Listeria
monocytogenes in alfalfa seeds.” J. Food Sci. 69: M117–M120, 2004.
^Carlez, J. P. Rosec, N. Richard, and J. C. Chaftel. “High pressure inactivation of Citrobacter
freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle.”
Lebensm.-Wiss. u.-Technol. 26: 357–363, 1993.
^F. Fioretto, C. Cruz, A. Largeteau, T. A. Sarli, G. Demazeau, and A. El Moueffak. “Inactivation of Staphylococcus aureus and Salmonella enteritidis in tryptic soy broth and caviar samples by high
pressure processing.” Braz. J. Med. Biol. Res. 38: 1259–1265, 2005.
^S-Y. Lee, R. H. Dougherty, and D.-H. Kang, 2002. “Inhibitory effects of high pressure and heat on Alicyclobacillus acidoterrestris spores in apple juice.” Appl. Env. Microbiol. 68: 4158–4161, 2002.
^I. van Opstal, C. F. Bagamboula, S. C. M. Vanmuysen, E. Y. Wuytack, and C. W. Michiels. “Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.” Int. J. Food Microbiol. 92: 227–234, 2004.
^ abE. Ananta, V. Heinz, O. Schlüter, and D. Knorr. “Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices.” Inno. Food Sci. Emer. Technol.
2: 261–272, 2001.
^S. Rajan, V. M. Balasubramaniam, and A. E. Yousef. “Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing.” Lebensm.-Wiss. u.-Technol. 39:
844–851, 2006b.
^D. Margosch, M. A. Ehrmann, M. G. Gäzle, and R. F. Vogel. “Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots.” J. Food Prot. 67: 2530–2537, 2004b.
^N. R. Reddy, H. M. Solomon, R. C. Tetzloff, and E. J. Rhodehamel. “Inactivation of Clostridium botulinum Type A spores by high-pressure processing at elevated temperature.” J. Food Prot. 66: 1402–1407, 2003.
^C. E. O’Reilly, P. M. O’Connor, A. L. Kelly, T. Beresford, and P. M. Murphy. “Use of hydrostatic pressure for inactivation of microbial contamination in cheese.” Appl. Environ. Microbiol. 66: 4890–4896, 2000.
^K. R. Calci, G. K. Meade, R .C. Tezloff, and D. H. Kingsley. “High-pressure inactivation of hepatitis A virus within oysters.” Appl. Environ. Microbiol. 71: 339–343, 2005.
^ abD. H. Kingsley, D. Guan, and D. G. Hoover. “Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions.” J. Food Prot. 68: 1748–1751, 2005.
^ abF. Devlieghere, L. Vermeiren, and J. Debevere. “New preservation technologies: Possibilities and limitations.” Int. Dairy J. 14: 273–285, 2004.
^Q. Zhang, G. V. Barbosa-Canovas, and B. G. Swanson. “Engineering aspects of pulses electric field pasteurization.” J. Food Eng. 25: 261–281, 1995
^P. Butz and B. Tauscher. “Emerging technologies: chemical aspects.” Food Res. Int. 35: 279–284, 2002.
^V. Heinz, I. Alvarez, A. Angersbach, and D. Knorr. “Preservation of liquid foods by high intensity
pulsed electric fields-basic concepts for process design.” Trends Food Sci. Technol. 12: 103–111, 2001.
^H. Vega-Mercado, O. Martin-Belloso, B. -L. Qin, et al.. “Non-thermal food preservation: Pulsed electric fields.” Trends in Food Sci. Technol. 8: 151–157, 1997.
^ abJ. Farkas. “Irradiation as a method for decontaminating food-A review.” Int. J. Food Microbiol. 44: 189–204, 1998.
^J. Henkel. “Irradiation: A safe measure for safer food.” FDA Consumer. Publication No. (FDA) 98-2320, 1998.
^D. W. Thayer. “Ionizing irradiation, treatment of food.” In: Encyclopedia of Agricultural,
Food and Biological Engineering (Dennis R. Heldman, ed.), Marcel Dekker, Inc. 536–539, 2003.
^D. G. Olson. “Irradiation of food.” Food Technol. 52: 56–62, 1998.
^J. S. Smith and S. Pillai. “Irradiation and food safety.” Food Technol. 58: 48–55, 2004.
^ abT. Bintsis, E. Litopoulou-Tzanetaki, and R. K. Robinson. “Existing and potential applications of ultraviolet light in the food industry-a critical review.” J. Sci. Food Agric. 80: 637–645, 2000.
^W. L. Ferron, A. Eisenstark, and D. Mackay. “Distinction between far- and near-ultraviolet light killing of recombinationless (recA) Salmonella typhimurium.” Biochem. Biophys. Acta. 277: 651–658, 1972.
^H. Liltved and S. J. Cripps. “Removal of particle-associated bacteria by prefiltration and ultraviolet irradiation.” Aquaculture Res. 30: 445–450, 1999.
^P. B. Shah, U. S. Shah, and S. C. B. Siripurapu. “Ultraviolet irradiation and laminar air flow systems
for clean air in dairy plants.” Indian Dairyman. 46: 757–759, 1994.
^WHO (World Health Organization). “Ultraviolet radiation.” Environmental Health Criteria. 160, Vammala. 1994.
^Y. Tanaka and K. Kawaguchi. Sterilization of vacuum packaged raw meat. U.S. patent 4983411,
1991.
^R. A. Stermer, M. Lasater-Smith, and C. F. Brasington. Ultraviolet radiation-an effective bactericide for fresh meat.” J. Food Prot. 50: 108–111, 1987.
^J. G. Kim, A. E. Yousef, and S. Dave. “Application of ozone for enhancing the microbiological safety and quality of foods: A review.” J. Food Prot. 62: 1071–1087, 1999.
^[J. G. Kim, A. E. Yousef, and M. A. Khadre. “Ozone and its current and future application in the food industry.” Adv. Food and Nutr. Res. 45: 167–218, 2003.
^M. A. Khadre and A. E. Yousef.. “Sporicidal action of ozone and hydrogen peroxide: a comparative study.” Int. J. Food Microbiol. 71: 131–138, 2001.
^ abJ. L. Bricher. “Technology round-up: New frontiers in pathogen testing.” Food Safety Mag. 11: 36–77, 2005b.
^L. B. Blyn. “Biosensors and food protection.” Food Technol. 60: 36–41, 2006.
^D. Y. C. Fung, D. Y. C. “Rapid methods and automation in microbiology.” Comprehen. Rev. Food Sci. Food Saf. 1: 322, 2002.
^W. E. Hill. “The polymerase chain reaction: application for the detection of foodborne pathogens.” CRC Crit. Rev. Food Sci. Nutr. 36: 123–173, 1996.
^M. R. Adams and M. O. Moss. Food Microbiology, Second Edition, Panima Publishing Corporation, New Delhi, 388–399, 2003.
^J. M. Jay. Modern food microbiology, Fourth Edition, Chapman & Hall Inc., New York, p. 147. 2003.
^L. D. Mello and L. T. Kubota. “Review of the use of biosensors as analytical tools in the food and drink industries.” Food Chem. 77: 237–256, 2002.
^D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins, and S. Stricker. “Application of electrochemical biosensors for detection of food pathogenic bacteria.” Electroanal. 12: 317–325, 2000.
^A. G. Rand, J. Ye, C. W. Brown, and S. V. Letcher. “Optical biosensors for food pathogen detection.”Food Technol. 56: 32–39, 2002.
^N. Baldauf, L. A. Rodriguez-Romo, A. E. Yousef, and L. E. Rodriguez-Saona. “Identification and
differentiation of selected Salmonella enterica serovars by Fourier-transform mid-infrared spectroscopy.”
Appl. Spectro. 60: 592–598(7), 2006.
^L. Mariey, J. P. Signolle, C. Amiel, and J. Travert. 2001. “Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics.” Vibrational spectroscopy. 26: 151–159, 2001.