黄金分割搜索
黄金分割搜索是一种通过不断缩小单峰函数的最值的已知范围,从而找到最值的方法。它的名称源于这个算法保持了间距具有黄金分割特性的三个点。这个算法与斐波那契搜索和二分查找关系紧密。黄金分割搜索是由Kiefer提出的,而斐波那契搜索是由Avriel和Wilde所提出。 内容基本概念上图表示了算法中找最小值的一个步骤。的函数值位于垂直坐标轴上,参数x位于水平坐标轴。已经有三个位于函数上的点的值被计算出来。: ,,和。可见小于和,所以很明显的,最小值处于和之间。 接下来的步骤是通过计算函数位于另一个点的值。在最大的区间选择会更有效率,例如:和之间。从图中我们可以看出,如果函数的值落在的话,最小值落于和之间,并且新的一组点将会是和和。然而如果函数的值为的话,新的一组点将会是和和。因此,无论是哪种情况,我们都可以建立一个新的更狭窄的区间,用于搜索函数的最小值。 点的选择由图可知,新的区间会介于和,长度为a+c,或者介于和,长度为。黄金分割搜索要求这些区间是相等的。若不是如此,较宽的区间会被使用很多次,降低了收敛率。为了确保 = + ,算法应确保 = - + 。 然而的确定仍是一个问题。我们避免了非常接近或者的情况,确保了每一次迭代区间宽度会缩小同样的比例。 为了确保计算后的值与之间的成比例,假设的值为,且我们新的一组点为,和,则必须使:
而φ就是黄金比例: 这就是这个算法被称为黄金分割搜索的原因。 3.终止条件4.递归算法5.斐波那契搜索6.参阅 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia