獨立性 (數理邏輯)在數理邏輯上,獨立性指的是一個句子相對於其他句子的不可證明性。 若一個句子獨立於一個一階理論,那就表示說在中是不能證明也不能否證的,也就是說不能由證明,也不能由證明為偽。對於這樣的,有時會說在中是不可判定的,而這裡的「不可判定」跟決定性問題中的「不可判定」是不同的。 若理論中的每項公設都不能由中的其他公設證明,則說是獨立的,一個有著獨立公設集合的理論又稱可獨立公設化的。 用法注意在一些作者的用法下,「獨立於」只表示「在中是不能證明的」,但不表示是不能否證的,而這些作者在講說「在中是不能證明也不能否證的」時候,常會說「是獨立且自洽於的。」 集合論中的獨立結果在假定ZFC(帶有選擇公理的策梅洛-弗兰克尔集合论)本身自洽的狀況下,下述的問題是獨立於ZFC的: 下述的問題不相容於選擇公理,故不與ZFC相容;然而這些問題很可能獨立於ZF;換句話說下述的問題不能在ZF中證明,且只有少數的集合論專家期望在ZF中找到這些問題的否證;然而即使ZF是自洽的,也無法以ZF證明下述的問題獨立於ZF: 在物理理論上的應用自2000年起,學界開始認為邏輯獨立性在物理基礎上扮演著關鍵角色。[1][2] 參見
註解
參考資料
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia