半整數
其中n為整數。例如,
等都是半整數。要注意整數的一半不一定總是半整數:偶數的一半便是一個整數,而非半整數。半整數恰好都是奇數一半之數。 所有半整數所組成之集合通常標記成
用途半整數出現在數學文章中的次數,頻繁到足以因方便之故而付予其一特別的符號。例如,四維單位球的最密球體填充會將一個球放在全是整數或全是半整數的座標的點上;此種填充和赫爾維茲整數有很深的關連,其為其實係數全是整數或半整數的四元數[1]。 更甚地,泡利不相容原理源自於費米子的定義為其自旋是半整數的粒子[2] 量子諧振子的能階出現在半整數之中,且因此其最低能源不會是零[3]。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia